0x40012400: ADC address block description
1/150 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | ADC_ISR | ||||||||||||||||||||||||||||||||
0x4 | ADC_IER | ||||||||||||||||||||||||||||||||
0x8 | ADC_CR | ||||||||||||||||||||||||||||||||
0xc | ADC_CFGR1 | ||||||||||||||||||||||||||||||||
0x10 | ADC_CFGR2 | ||||||||||||||||||||||||||||||||
0x14 | ADC_SMPR | ||||||||||||||||||||||||||||||||
0x20 | ADC_AWD1TR | ||||||||||||||||||||||||||||||||
0x24 | ADC_AWD2TR | ||||||||||||||||||||||||||||||||
0x28 | ADC_CHSELR | ||||||||||||||||||||||||||||||||
0x28 | ADC_CHSELR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x2c | ADC_AWD3TR | ||||||||||||||||||||||||||||||||
0x40 | ADC_DR | ||||||||||||||||||||||||||||||||
0xa0 | ADC_AWD2CR | ||||||||||||||||||||||||||||||||
0xa4 | ADC_AWD3CR | ||||||||||||||||||||||||||||||||
0xb4 | ADC_CALFACT | ||||||||||||||||||||||||||||||||
0x308 | ADC_CCR |
ADC interrupt and status register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCRDY
rw |
EOCAL
rw |
AWD3
rw |
AWD2
rw |
AWD1
rw |
OVR
rw |
EOS
rw |
EOC
rw |
EOSMP
rw |
ADRDY
rw |
Bit 0: ADC ready This bit is set by hardware after the ADC has been enabled (ADEN+1) and when the ADC reaches a state where it is ready to accept conversion requests. It is cleared by software writing 1 to it..
Bit 1: End of sampling flag This bit is set by hardware during the conversion, at the end of the sampling phase.It is cleared by software by programming it to 1..
Bit 2: End of conversion flag This bit is set by hardware at the end of each conversion of a channel when a new data result is available in the ADC_DR register. It is cleared by software writing 1 to it or by reading the ADC_DR register..
Bit 3: End of sequence flag This bit is set by hardware at the end of the conversion of a sequence of channels selected by the CHSEL bits. It is cleared by software writing 1 to it..
Bit 4: ADC overrun This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete while the EOC flag was already set. It is cleared by software writing 1 to it..
Bit 7: Analog watchdog 1 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_TR1 and ADC_HR1 registers. It is cleared by software by programming it to 1..
Bit 8: Analog watchdog 2 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_AWD2TR and ADC_AWD2TR registers. It is cleared by software programming it it..
Bit 9: Analog watchdog 3 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_AWD3TR and ADC_AWD3TR registers. It is cleared by software by programming it to 1..
Bit 11: End Of Calibration flag This bit is set by hardware when calibration is complete. It is cleared by software writing 1 to it..
Bit 13: Channel Configuration Ready flag This flag bit is set by hardware when the channel configuration is applied after programming to ADC_CHSELR register or changing CHSELRMOD or SCANDIR. It is cleared by software by programming it to it. Note: When the software configures the channels (by programming ADC_CHSELR or changing CHSELRMOD or SCANDIR), it must wait until the CCRDY flag rises before configuring again or starting conversions, otherwise the new configuration (or the START bit) is ignored. Once the flag is asserted, if the software needs to configure again the channels, it must clear the CCRDY flag before proceeding with a new configuration..
ADC interrupt enable register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCRDYIE
rw |
EOCALIE
rw |
AWD3IE
rw |
AWD2IE
rw |
AWD1IE
rw |
OVRIE
rw |
EOSIE
rw |
EOCIE
rw |
EOSMPIE
rw |
ADRDYIE
rw |
Bit 0: ADC ready interrupt enable This bit is set and cleared by software to enable/disable the ADC Ready interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 1: End of sampling flag interrupt enable This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 2: End of conversion interrupt enable This bit is set and cleared by software to enable/disable the end of conversion interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 3: End of conversion sequence interrupt enable This bit is set and cleared by software to enable/disable the end of sequence of conversions interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 4: Overrun interrupt enable This bit is set and cleared by software to enable/disable the overrun interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 7: Analog watchdog 1 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. Note: The Software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 8: Analog watchdog 2 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. Note: The Software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 9: Analog watchdog 3 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. Note: The Software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 11: End of calibration interrupt enable This bit is set and cleared by software to enable/disable the end of calibration interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
Bit 13: Channel Configuration Ready Interrupt enable This bit is set and cleared by software to enable/disable the channel configuration ready interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no conversion is ongoing)..
ADC control register
Offset: 0x8, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCAL
rw |
ADVREGEN
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ADSTP
rw |
ADSTART
rw |
ADDIS
rw |
ADEN
rw |
Bit 0: ADC enable command This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the ADRDY flag has been set. It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command..
Bit 1: ADC disable command.
Bit 2: ADC start conversion command.
Bit 4: ADC stop conversion command.
Bit 28: ADC Voltage Regulator Enable.
Bit 31: ADC calibration This bit is set by software to start the calibration of the ADC..
ADC configuration register 1
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWD1CH
rw |
AWD1EN
rw |
AWD1SGL
rw |
CHSELRMOD
rw |
DISCEN
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AUTOFF
rw |
WAIT
rw |
CONT
rw |
OVRMOD
rw |
EXTEN
rw |
EXTSEL
rw |
ALIGN
rw |
RES
rw |
SCANDIR
rw |
DMACFG
rw |
DMAEN
rw |
Bit 0: Direct memory access enable This bit is set and cleared by software to enable the generation of DMA requests. This allows the DMA controller to be used to manage automatically the converted data. For more details, refer to Section113.6.5: Managing converted data using the DMA on page1333..
Bit 1: Direct memory access configuration This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN1=11. For more details, refer to Section113.6.5: Managing converted data using the DMA on page1333..
Bit 2: Scan sequence direction This bit is set and cleared by software to select the direction in which the channels is scanned in the sequence. It is effective only if CHSELMOD bit is cleared. Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bits 3-4: Data resolution These bits are written by software to select the resolution of the conversion..
Bit 5: Data alignment This bit is set and cleared by software to select right or left alignment. Refer to Figure141: Data alignment and resolution (oversampling disabled: OVSE = 0) on page1332.
Bits 6-8: External trigger selection These bits select the external event used to trigger the start of conversion (refer to Table160: External triggers for details):.
Bits 10-11: External trigger enable and polarity selection These bits are set and cleared by software to select the external trigger polarity and enable the trigger..
Bit 12: Overrun management mode This bit is set and cleared by software and configure the way data overruns are managed..
Bit 13: Single / continuous conversion mode This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN1=11 and CONT1=11..
Bit 14: Wait conversion mode This bit is set and cleared by software to enable/disable wait conversion mode.<sup>.</sup>.
Bit 15: Auto-off mode This bit is set and cleared by software to enable/disable auto-off mode.<sup>.</sup>.
Bit 16: Discontinuous mode This bit is set and cleared by software to enable/disable discontinuous mode. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN1=11 and CONT1=11..
Bit 21: Mode selection of the ADC_CHSELR register This bit is set and cleared by software to control the ADC_CHSELR feature: Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 22: Enable the watchdog on a single channel or on all channels This bit is set and cleared by software to enable the analog watchdog on the channel identified by the AWDCH[4:0] bits or on all the channels.
Bit 23: Analog watchdog enable This bit is set and cleared by software..
Bits 26-30: Analog watchdog channel selection These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. ..... Others: Reserved Note: The channel selected by the AWDCH[4:0] bits must be also set into the CHSELR register..
ADC configuration register 2
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CKMODE
rw |
LFTRIG
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TOVS
rw |
OVSS
rw |
OVSR
rw |
OVSE
rw |
Bit 0: Oversampler Enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADEN bit is cleared..
Bits 2-4: Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADEN bit is cleared..
Bits 5-8: Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADEN bit is cleared..
Bit 9: Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADEN bit is cleared..
Bit 29: Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADEN bit is cleared..
Bits 30-31: ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL1=10, ADSTART1=10, ADSTP1=10, ADDIS1=10 and ADEN1=10)..
ADC sampling time register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMPSEL19
rw |
SMPSEL18
rw |
SMPSEL17
rw |
SMPSEL16
rw |
SMPSEL15
rw |
SMPSEL14
rw |
SMPSEL13
rw |
SMPSEL12
rw |
SMPSEL11
rw |
SMPSEL10
rw |
SMPSEL9
rw |
SMPSEL8
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SMPSEL7
rw |
SMPSEL6
rw |
SMPSEL5
rw |
SMPSEL4
rw |
SMPSEL3
rw |
SMPSEL2
rw |
SMPSEL1
rw |
SMPSEL0
rw |
SMP2
rw |
SMP1
rw |
Bits 0-2: Sampling time selection 1 These bits are written by software to select the sampling time that applies to all channels. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bits 4-6: Sampling time selection 2 These bits are written by software to select the sampling time that applies to all channels. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 8: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 9: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 10: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 11: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 12: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 13: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 14: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 15: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 16: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 17: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 18: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 19: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 20: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 21: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 22: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 23: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 24: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 25: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 26: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 27: Channel-x sampling time selection (x1=119 to 0) These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
ADC watchdog threshold register
Offset: 0x20, size: 32, reset: 0x0FFF0000, access: Unspecified
0/2 fields covered.
Bits 0-11: Analog watchdog 1 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
Bits 16-27: Analog watchdog 1 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
ADC watchdog threshold register
Offset: 0x24, size: 32, reset: 0x0FFF0000, access: Unspecified
0/2 fields covered.
Bits 0-11: Analog watchdog 2 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
Bits 16-27: Analog watchdog 2 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
ADC channel selection register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHSEL19
rw |
CHSEL18
rw |
CHSEL17
rw |
CHSEL16
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CHSEL15
rw |
CHSEL14
rw |
CHSEL13
rw |
CHSEL12
rw |
CHSEL11
rw |
CHSEL10
rw |
CHSEL9
rw |
CHSEL8
rw |
CHSEL7
rw |
CHSEL6
rw |
CHSEL5
rw |
CHSEL4
rw |
CHSEL3
rw |
CHSEL2
rw |
CHSEL1
rw |
CHSEL0
rw |
Bit 0: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 1: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 2: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 3: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 4: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 5: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 6: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 7: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 8: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 9: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 10: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 11: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 12: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 13: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 14: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 15: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 16: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 17: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 18: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
Bit 19: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing). Note: If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored..
ADC channel selection register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SQ8
rw |
SQ7
rw |
SQ6
rw |
SQ5
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SQ4
rw |
SQ3
rw |
SQ2
rw |
SQ1
rw |
Bits 0-3: 1st conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 4-7: 2nd conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 8-11: 3rd conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 12-15: 4th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 16-19: 5th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 20-23: 6th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 24-27: 7th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bits 28-31: 8th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates the end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. ... Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
ADC watchdog threshold register
Offset: 0x2c, size: 32, reset: 0x0FFF0000, access: Unspecified
0/2 fields covered.
Bits 0-11: Analog watchdog 3lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
Bits 16-27: Analog watchdog 3 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section113.8: Analog window watchdogs on page1337..
ADC data register
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DATA
r |
Bits 0-15: Converted data These bits are read-only. They contain the conversion result from the last converted channel. The data are left- or right-aligned as shown in Figure141: Data alignment and resolution (oversampling disabled: OVSE = 0) on page1332. Just after a calibration is complete, DATA[6:0] contains the calibration factor..
ADC analog watchdog 2 configuration register
Offset: 0xa0, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWD2CH19
rw |
AWD2CH18
rw |
AWD2CH17
rw |
AWD2CH16
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AWD2CH15
rw |
AWD2CH14
rw |
AWD2CH13
rw |
AWD2CH12
rw |
AWD2CH11
rw |
AWD2CH10
rw |
AWD2CH9
rw |
AWD2CH8
rw |
AWD2CH7
rw |
AWD2CH6
rw |
AWD2CH5
rw |
AWD2CH4
rw |
AWD2CH3
rw |
AWD2CH2
rw |
AWD2CH1
rw |
AWD2CH0
rw |
Bit 0: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 1: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 2: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 3: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 4: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 5: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 6: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 7: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 8: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 9: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 10: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 11: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 12: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 13: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 14: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 15: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 16: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 17: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 18: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 19: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
ADC Analog Watchdog 3 Configuration register
Offset: 0xa4, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWD3CH19
rw |
AWD3CH18
rw |
AWD3CH17
rw |
AWD3CH16
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AWD3CH15
rw |
AWD3CH14
rw |
AWD3CH13
rw |
AWD3CH12
rw |
AWD3CH11
rw |
AWD3CH10
rw |
AWD3CH9
rw |
AWD3CH8
rw |
AWD3CH7
rw |
AWD3CH6
rw |
AWD3CH5
rw |
AWD3CH4
rw |
AWD3CH3
rw |
AWD3CH2
rw |
AWD3CH1
rw |
AWD3CH0
rw |
Bit 0: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 1: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 2: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 3: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 4: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 5: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 6: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 7: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 8: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 9: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 10: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 11: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 12: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 13: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 14: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 15: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 16: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 17: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 18: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
Bit 19: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing)..
ADC calibration factor
Offset: 0xb4, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CALFACT
rw |
Bits 0-6: Calibration factor These bits are written by hardware or by software. Once a calibration is complete,1they are updated by hardware with the calibration factors. Software can write these bits with a new calibration factor. If the new calibration factor is different from the current one stored into the analog ADC, it is then applied once a new conversion is launched. Just after a calibration is complete, DATA[6:0] contains the calibration factor. Note: Software can write these bits only when ADEN=1 (ADC is enabled and no calibration is ongoing and no conversion is ongoing)..
ADC common configuration register
Offset: 0x308, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VBATEN
rw |
TSEN
rw |
VREFEN
rw |
PRESC
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits 18-21: ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. Other: Reserved Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL1=10, ADSTART1=10, ADSTP1=10, ADDIS1=10 and ADEN1=10)..
Bit 22: V<sub>REFINT</sub> enable This bit is set and cleared by software to enable/disable the V<sub>REFINT</sub>. Note: Software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 23: Temperature sensor enable This bit is set and cleared by software to enable/disable the temperature sensor. Note: Software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing)..
Bit 24: V<sub>BAT</sub> enable This bit is set and cleared by software to enable/disable the V<sub>BAT</sub> channel. Note: The software is allowed to write this bit only when ADSTART1=10 (which ensures that no conversion is ongoing).
0x40010200: COMP address block description
2/22 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | COMP1_CSR | ||||||||||||||||||||||||||||||||
0x4 | COMP2_CSR |
Comparator 1 control and status register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
1/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOCK
rw |
VALUE
r |
BLANKSEL
rw |
PWRMODE
rw |
HYST
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
POLARITY
rw |
WINOUT
rw |
WINMODE
rw |
INPSEL
rw |
INMSEL
rw |
EN
rw |
Bit 0: Comparator 1 enable bit This bit is controlled by software (if not locked). It enables the comparator 1:.
Bits 4-7: Comparator 1 signal selector for inverting input INM This bitfield is controlled by software (if not locked). It selects the signal for the inverting input COMP_INM of the comparator 1: Refer to Table176: COMP1 inverting input assignment..
Bits 8-10: Comparator 1 signal selector for noninverting input This bitfield is controlled by software (if not locked). It selects the signal for the noninverting input COMP_INP of the comparator 1 (also see the WINMODE bit): Refer to Table175: COMP1 noninverting input assignment..
Bit 11: Comparator 1 noninverting input selector for window mode This bit is controlled by software (if not locked). It selects the signal for COMP_INP input of the comparator 1:.
Bit 14: Comparator 1 output selector This bit is controlled by software (if not locked). It selects the comparator 1 output:.
Bit 15: Comparator 1 polarity selector This bit is controlled by software (if not locked). It selects the comparator 1 output polarity:.
Bits 16-17: Comparator 1 hysteresis selector This bitfield is controlled by software (if not locked). It selects the hysteresis of the comparator 1:.
Bits 18-19: Comparator 1 power mode selector This bitfield is controlled by software (if not locked). It selects the power consumption and as a consequence the speed of the comparator 1:.
Bits 20-24: Comparator 1 blanking source selector This bitfield is controlled by software (if not locked). It selects the blanking source: Others: Reserved, must not be used.
Bit 30: Comparator 1 output status This bit is read-only. It reflects the level of the comparator 1 output after the polarity selector and blanking, as indicated in Figure163..
Bit 31: COMP_CSR register lock This bit is set by software and cleared by a system reset. It locks the comparator 3 control bits. When locked, all register bits are read-only..
Comparator 2 control and status register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
1/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOCK
rw |
VALUE
r |
BLANKSEL
rw |
PWRMODE
rw |
HYST
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
POLARITY
rw |
WINOUT
rw |
WINMODE
rw |
INPSEL
rw |
INMSEL
rw |
EN
rw |
Bit 0: Comparator 2 enable bit This bit is controlled by software (if not locked). It enables the comparator 2:.
Bits 4-7: Comparator 2 signal selector for inverting input INM This bitfield is controlled by software (if not locked). It selects the signal for the inverting input COMP_INM of the comparator 2: Refer to Table178: COMP2 inverting input assignment..
Bits 8-9: Comparator 2 signal selector for noninverting input This bitfield is controlled by software (if not locked). It selects the signal for the noninverting input COMP_INP of the comparator 2 (also see the WINMODE bit): Refer to Table177: COMP2 noninverting input assignment..
Bit 11: Comparator 2 noninverting input selector for window mode This bit is controlled by software (if not locked). It selects the signal for COMP_INP input of the comparator 2:.
Bit 14: Comparator 2 output selector This bit is controlled by software (if not locked). It selects the comparator 2 output:.
Bit 15: Comparator 2 polarity selector This bit is controlled by software (if not locked). It selects the comparator 2 output polarity:.
Bits 16-17: Comparator 2 hysteresis selector This bitfield is controlled by software (if not locked). It selects the hysteresis of the comparator 2:.
Bits 18-19: Comparator 2 power mode selector This bitfield is controlled by software (if not locked). It selects the power consumption and as a consequence the speed of the comparator 2:.
Bits 20-24: Comparator 2 blanking source selector This bitfield is controlled by software (if not locked). It selects the blanking source: Others: Reserved, must not be used.
Bit 30: Comparator 2 output status This bit is read-only. It reflects the level of the comparator 2 output after the polarity selector and blanking, as indicated in Figure163..
Bit 31: COMP_CSR register lock This bit is set by software and cleared by a system reset. It locks the comparator 3 control bits. When locked, all register bits are read-only..
0x40023000: CRC address block description
0/10 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | CRC_DR | ||||||||||||||||||||||||||||||||
0x4 | CRC_IDR | ||||||||||||||||||||||||||||||||
0x8 | CRC_CR | ||||||||||||||||||||||||||||||||
0x10 | CRC_INIT | ||||||||||||||||||||||||||||||||
0x14 | CRC_POL |
CRC data register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/1 fields covered.
CRC independent data register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
CRC control register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RTYPE_OUT
rw |
RTYPE_IN
rw |
REV_OUT
rw |
REV_IN
rw |
POLYSIZE
rw |
RESET
rw |
Bit 0: RESET bit This bit is set by software to reset the CRC calculation unit and set the data register to the value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware.
Bits 3-4: Polynomial size These bits control the size of the polynomial..
Bits 5-6: Reverse input data This bitfield controls the reversal of the bit order of the input data.
Bits 7-8: Reverse output data This bitfield controls the reversal of the bit order of the output data..
Bit 9: Reverse type input This bit controls the reversal granularity of the input data..
Bit 10: Reverse type output This bit controls the reversal granularity of the output data..
CRC initial value
Offset: 0x10, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/1 fields covered.
0x40006c00: CRS address block description
9/26 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | CRS_CR | ||||||||||||||||||||||||||||||||
0x4 | CRS_CFGR | ||||||||||||||||||||||||||||||||
0x8 | CRS_ISR | ||||||||||||||||||||||||||||||||
0xc | CRS_ICR |
CRS control register
Offset: 0x0, size: 32, reset: 0x00004000, access: Unspecified
0/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIM
rw |
SWSYNC
rw |
AUTOTRIMEN
rw |
CEN
rw |
ESYNCIE
rw |
ERRIE
rw |
SYNCWARNIE
rw |
SYNCOKIE
rw |
Bit 0: SYNC event OK interrupt enable.
Bit 1: SYNC warning interrupt enable.
Bit 2: Synchronization or trimming error interrupt enable.
Bit 3: Expected SYNC interrupt enable.
Bit 5: Frequency error counter enable This bit enables the oscillator clock for the frequency error counter. When this bit is set, the CRS_CFGR register is write-protected and cannot be modified..
Bit 6: Automatic trimming enable This bit enables the automatic hardware adjustment of TRIM bits according to the measured frequency error between two SYNC events. If this bit is set, the TRIM bits are read-only. The TRIM value can be adjusted by hardware by one or two steps at a time, depending on the measured frequency error value. Refer to Section15.4.4 for more details..
Bit 7: Generate software SYNC event This bit is set by software in order to generate a software SYNC event. It is automatically cleared by hardware..
Bits 8-14: HSI48 oscillator smooth trimming The default value of the HSI48 oscillator smooth trimming is 64, which corresponds to the middle of the trimming interval..
CRS configuration register
Offset: 0x4, size: 32, reset: 0x2022BB7F, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNCPOL
rw |
SYNCSRC
rw |
SYNCDIV
rw |
FELIM
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RELOAD
rw |
Bits 0-15: Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to Section15.4.3 for more details about counter behavior..
Bits 16-23: Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP[15:0] bits of the CRS_ISR register. Refer to Section15.4.4 for more details about FECAP evaluation..
Bits 24-26: SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal..
Bits 28-29: SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source (see Table122): Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF is not generated by the host. No SYNC signal is therefore provided to the CRS to calibrate the HSI48 oscillator on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs must be used as SYNC signal..
Bit 31: SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source..
CRS interrupt and status register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
9/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FECAP
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
FEDIR
r |
TRIMOVF
r |
SYNCMISS
r |
SYNCERR
r |
ESYNCF
r |
ERRF
r |
SYNCWARNF
r |
SYNCOKF
r |
Bit 0: SYNC event OK flag This flag is set by hardware when the measured frequency error is smaller than FELIM * 3. This means that either no adjustment of the TRIM value is needed or that an adjustment by one trimming step is enough to compensate the frequency error. An interrupt is generated if the SYNCOKIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCOKC bit in the CRS_ICR register..
Bit 1: SYNC warning flag This flag is set by hardware when the measured frequency error is greater than or equal to FELIM * 3, but smaller than FELIM * 128. This means that to compensate the frequency error, the TRIM value must be adjusted by two steps or more. An interrupt is generated if the SYNCWARNIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCWARNC bit in the CRS_ICR register..
Bit 2: Error flag This flag is set by hardware in case of any synchronization or trimming error. It is the logical OR of the TRIMOVF, SYNCMISS and SYNCERR bits. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software in reaction to setting the ERRC bit in the CRS_ICR register, which clears the TRIMOVF, SYNCMISS and SYNCERR bits..
Bit 3: Expected SYNC flag This flag is set by hardware when the frequency error counter reached a zero value. An interrupt is generated if the ESYNCIE bit is set in the CRS_CR register. It is cleared by software by setting the ESYNCC bit in the CRS_ICR register..
Bit 8: SYNC error This flag is set by hardware when the SYNC pulse arrives before the ESYNC event and the measured frequency error is greater than or equal to FELIM * 128. This means that the frequency error is too big (internal frequency too low) to be compensated by adjusting the TRIM value, and that some other action has to be taken. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register..
Bit 9: SYNC missed This flag is set by hardware when the frequency error counter reaches value FELIM * 128 and no SYNC is detected, meaning either that a SYNC pulse was missed, or the frequency error is too big (internal frequency too high) to be compensated by adjusting the TRIM value, hence some other action must be taken. At this point, the frequency error counter is stopped (waiting for a next SYNC), and an interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register..
Bit 10: Trimming overflow or underflow This flag is set by hardware when the automatic trimming tries to over- or under-flow the TRIM value. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register..
Bit 15: Frequency error direction FEDIR is the counting direction of the frequency error counter latched in the time of the last SYNC event. It shows whether the actual frequency is below or above the target..
Bits 16-31: Frequency error capture FECAP is the frequency error counter value latched in the time of the last SYNC event. Refer to Section15.4.4 for more details about FECAP usage..
CRS interrupt flag clear register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 0: SYNC event OK clear flag Writing 1 to this bit clears the SYNCOKF flag in the CRS_ISR register..
Bit 1: SYNC warning clear flag Writing 1 to this bit clears the SYNCWARNF flag in the CRS_ISR register..
Bit 2: Error clear flag Writing 1 to this bit clears TRIMOVF, SYNCMISS and SYNCERR bits and consequently also the ERRF flag in the CRS_ISR register..
Bit 3: Expected SYNC clear flag Writing 1 to this bit clears the ESYNCF flag in the CRS_ISR register..
0x40007400: DAC address block description
3/21 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | DAC_CR | ||||||||||||||||||||||||||||||||
0x4 | DAC_SWTRGR | ||||||||||||||||||||||||||||||||
0x8 | DAC_DHR12R1 | ||||||||||||||||||||||||||||||||
0xc | DAC_DHR12L1 | ||||||||||||||||||||||||||||||||
0x10 | DAC_DHR8R1 | ||||||||||||||||||||||||||||||||
0x2c | DAC_DOR1 | ||||||||||||||||||||||||||||||||
0x34 | DAC_SR | ||||||||||||||||||||||||||||||||
0x38 | DAC_CCR | ||||||||||||||||||||||||||||||||
0x3c | DAC_MCR | ||||||||||||||||||||||||||||||||
0x40 | DAC_SHSR1 | ||||||||||||||||||||||||||||||||
0x48 | DAC_SHHR | ||||||||||||||||||||||||||||||||
0x4c | DAC_SHRR |
DAC control register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEN1
rw |
DMAUDRIE1
rw |
DMAEN1
rw |
MAMP1
rw |
WAVE1
rw |
TSEL1
rw |
TEN1
rw |
EN1
rw |
Bit 0: DAC channel1 enable This bit is set and cleared by software to enable/disable DAC channel1..
Bit 1: DAC channel1 trigger enable This bit is set and cleared by software to enable/disable DAC channel1 trigger. Note: When software trigger is selected, the transfer from the DAC_DHR1 register to the DAC_DOR1 register takes only one dac_pclk clock cycle..
Bits 2-5: DAC channel1 trigger selection These bits select the external event used to trigger DAC channel1 ... Refer to the trigger selection tables in Section114.4.2: DAC pins and internal signals for details on trigger configuration and mapping. Note: Only used if bit TEN11=11 (DAC channel1 trigger enabled)..
Bits 6-7: DAC channel1 noise/triangle wave generation enable These bits are set and cleared by software. 1x: Triangle wave generation enabled Only used if bit TEN11=11 (DAC channel1 trigger enabled)..
Bits 8-11: DAC channel1 mask/amplitude selector.
Bit 12: DAC channel1 DMA enable This bit is set and cleared by software..
Bit 13: DAC channel1 DMA Underrun Interrupt enable This bit is set and cleared by software..
Bit 14: DAC channel1 calibration enable This bit is set and cleared by software to enable/disable DAC channel1 calibration, it can be written only if bit EN11=10 into DAC_CR (the calibration mode can be entered/exit only when the DAC channel is disabled) Otherwise, the write operation is ignored..
DAC software trigger register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWTRIG1
w |
DAC channel1 12-bit right-aligned data holding register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DACC1DHR
rw |
DAC channel1 12-bit left aligned data holding register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DACC1DHR
rw |
DAC channel1 8-bit right aligned data holding register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DACC1DHR
rw |
DAC channel1 data output register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DACC1DOR
r |
DAC status register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
2/3 fields covered.
Bit 13: DAC channel1 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1)..
Bit 14: DAC channel1 calibration offset status This bit is set and cleared by hardware.
Bit 15: DAC channel1 busy writing sample time flag This bit is systematically set just after Sample and hold mode enable and is set each time the software writes the register DAC_SHSR1, It is cleared by hardware when the write operation of DAC_SHSR1 is complete. (It takes about 3 LSI periods of synchronization)..
DAC calibration control register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OTRIM1
rw |
DAC mode control register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE1
rw |
Bits 0-2: DAC channel1 mode These bits can be written only when the DAC is disabled and not in the calibration mode (when bit EN11=10 and bit CEN11=10 in the DAC_CR register). If EN11=11 or CEN11=11 the write operation is ignored. They can be set and cleared by software to select the DAC channel1 mode: DAC channel1 in Normal mode DAC channel1 in sample & hold mode Note: This register can be modified only when EN11=10..
DAC channel1 sample and hold sample time register
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSAMPLE1
rw |
Bits 0-9: DAC channel1 sample time (only valid in Sample and hold mode) These bits can be written when the DAC channel1 is disabled or also during normal operation. in the latter case, the write can be done only when BWST1 of DAC_SR register is low, If BWST11=11, the write operation is ignored..
DAC sample and hold time register
Offset: 0x48, size: 32, reset: 0x00010001, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THOLD1
rw |
DAC sample and hold refresh time register
Offset: 0x4c, size: 32, reset: 0x00010001, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TREFRESH1
rw |
0x40015800: DBGMCU register block
22/42 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | DBGMCU_IDCODE | ||||||||||||||||||||||||||||||||
0x4 | DBGMCU_CR | ||||||||||||||||||||||||||||||||
0x8 | DBGMCU_APB1FZR | ||||||||||||||||||||||||||||||||
0xc | DBGMCU_APB2FZR | ||||||||||||||||||||||||||||||||
0xfc | DBGMCU_SR | ||||||||||||||||||||||||||||||||
0x100 | DBGMCU_DBG_AUTH_HOST | ||||||||||||||||||||||||||||||||
0x104 | DBGMCU_DBG_AUTH_DEVICE | ||||||||||||||||||||||||||||||||
0xfd0 | DBGMCU_PIDR4 | ||||||||||||||||||||||||||||||||
0xfe0 | DBGMCU_PIDR0 | ||||||||||||||||||||||||||||||||
0xfe4 | DBGMCU_PIDR1 | ||||||||||||||||||||||||||||||||
0xfe8 | DBGMCU_PIDR2 | ||||||||||||||||||||||||||||||||
0xfec | DBGMCU_PIDR3 | ||||||||||||||||||||||||||||||||
0xff0 | DBGMCU_CIDR0 | ||||||||||||||||||||||||||||||||
0xff4 | DBGMCU_CIDR1 | ||||||||||||||||||||||||||||||||
0xff8 | DBGMCU_CIDR2 | ||||||||||||||||||||||||||||||||
0xffc | DBGMCU_CIDR3 |
DBGMCU device ID code register
Offset: 0x0, size: 32, reset: 0x00006000, access: Unspecified
2/2 fields covered.
DBGMCU configuration register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBG_STANDBY
rw |
DBG_STOP
rw |
DBGMCU APB1 freeze register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBG_LPTIM1_STOP
rw |
DBG_LPTIM2_STOP
rw |
DBG_I2C1_STOP
rw |
DBG_I2C3_STOP
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DBG_IWDG_STOP
rw |
DBG_WWDG_STOP
rw |
DBG_RTC_STOP
rw |
DBG_TIM7_STOP
rw |
DBG_TIM6_STOP
rw |
DBG_TIM4_STOP
rw |
DBG_TIM3_STOP
rw |
DBG_TIM2_STOP
rw |
Bit 0: TIM2 stop in debug.
Bit 1: TIM3 stop in debug.
Bit 2: TIM4 stop in debug.
Bit 4: TIM6 stop in debug.
Bit 5: TIM7 stop in debug.
Bit 10: RTC stop in debug.
Bit 11: WWDG stop in debug.
Bit 12: IWDG stop in debug.
Bit 21: I2C3 SMBUS timeout stop in debug.
Bit 22: I2C1 SMBUS timeout stop in debug.
Bit 30: LPTIM2 stop in debug.
Bit 31: LPTIM1 stop in debug.
DBG APB2 freeze register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBG_LPTIM3_STOP
rw |
DBG_TIM16_STOP
rw |
DBG_TIM15_STOP
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DBG_TIM14_STOP
rw |
DBG_TIM1_STOP
rw |
DBGMCU status register
Offset: 0xfc, size: 32, reset: 0x00010003, access: Unspecified
4/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP0_ENABLED
r |
AP1_ENABLED
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AP0_PRESENT
r |
AP1_PRESENT
r |
Bit 0: Identifies whether access port AP1 is present in device.
Bit 1: Identifies whether access port AP0 is present in device.
Bit 16: Identifies whether access port AP0 is open (can be accessed via the debug port) or locked (debug access to the AP is blocked).
Bit 17: Identifies whether access port AP0 is open (can be accessed via the debug port) or locked (debug access to the AP is blocked).
DBGMCU debug authentication mailbox host register
Offset: 0x100, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
DBGMCU debug authentication mailbox device register
Offset: 0x104, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
DBGMCU CoreSight peripheral identity register 4
Offset: 0xfd0, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
DBGMCU CoreSight peripheral identity register 0
Offset: 0xfe0, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PARTNUM
r |
DBGMCU CoreSight peripheral identity register 1
Offset: 0xfe4, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
DBGMCU CoreSight peripheral identity register 2
Offset: 0xfe8, size: 32, reset: 0x0000000A, access: Unspecified
3/3 fields covered.
DBGMCU CoreSight peripheral identity register 3
Offset: 0xfec, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
DBGMCU CoreSight component identity register 0
Offset: 0xff0, size: 32, reset: 0x0000000D, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PREAMBLE
r |
DBGMCU CoreSight component identity register 1
Offset: 0xff4, size: 32, reset: 0x000000F0, access: Unspecified
2/2 fields covered.
DBGMCU CoreSight component identity register 2
Offset: 0xff8, size: 32, reset: 0x00000005, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PREAMBLE
r |
DBGMCU CoreSight component identity register 3
Offset: 0xffc, size: 32, reset: 0x000000B1, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PREAMBLE
r |
0x40020000: DMA register bank
28/161 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | DMA_ISR | ||||||||||||||||||||||||||||||||
0x4 | DMA_IFCR | ||||||||||||||||||||||||||||||||
0x8 | DMA_CCR1 | ||||||||||||||||||||||||||||||||
0xc | DMA_CNDTR1 | ||||||||||||||||||||||||||||||||
0x10 | DMA_CPAR1 | ||||||||||||||||||||||||||||||||
0x14 | DMA_CMAR1 | ||||||||||||||||||||||||||||||||
0x1c | DMA_CCR2 | ||||||||||||||||||||||||||||||||
0x20 | DMA_CNDTR2 | ||||||||||||||||||||||||||||||||
0x24 | DMA_CPAR2 | ||||||||||||||||||||||||||||||||
0x28 | DMA_CMAR2 | ||||||||||||||||||||||||||||||||
0x30 | DMA_CCR3 | ||||||||||||||||||||||||||||||||
0x34 | DMA_CNDTR3 | ||||||||||||||||||||||||||||||||
0x38 | DMA_CPAR3 | ||||||||||||||||||||||||||||||||
0x3c | DMA_CMAR3 | ||||||||||||||||||||||||||||||||
0x44 | DMA_CCR4 | ||||||||||||||||||||||||||||||||
0x48 | DMA_CNDTR4 | ||||||||||||||||||||||||||||||||
0x4c | DMA_CPAR4 | ||||||||||||||||||||||||||||||||
0x50 | DMA_CMAR4 | ||||||||||||||||||||||||||||||||
0x58 | DMA_CCR5 | ||||||||||||||||||||||||||||||||
0x5c | DMA_CNDTR5 | ||||||||||||||||||||||||||||||||
0x60 | DMA_CPAR5 | ||||||||||||||||||||||||||||||||
0x64 | DMA_CMAR5 | ||||||||||||||||||||||||||||||||
0x6c | DMA_CCR6 | ||||||||||||||||||||||||||||||||
0x70 | DMA_CNDTR6 | ||||||||||||||||||||||||||||||||
0x74 | DMA_CPAR6 | ||||||||||||||||||||||||||||||||
0x78 | DMA_CMAR6 | ||||||||||||||||||||||||||||||||
0x80 | DMA_CCR7 | ||||||||||||||||||||||||||||||||
0x84 | DMA_CNDTR7 | ||||||||||||||||||||||||||||||||
0x88 | DMA_CPAR7 | ||||||||||||||||||||||||||||||||
0x8c | DMA_CMAR7 |
DMA interrupt status register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEIF7
r |
HTIF7
r |
TCIF7
r |
GIF7
r |
TEIF6
r |
HTIF6
r |
TCIF6
r |
GIF6
r |
TEIF5
r |
HTIF5
r |
TCIF5
r |
GIF5
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TEIF4
r |
HTIF4
r |
TCIF4
r |
GIF4
r |
TEIF3
r |
HTIF3
r |
TCIF3
r |
GIF3
r |
TEIF2
r |
HTIF2
r |
TCIF2
r |
GIF2
r |
TEIF1
r |
HTIF1
r |
TCIF1
r |
GIF1
r |
Bit 0: Global interrupt flag for channel 1.
Bit 1: Transfer complete (TC) flag for channel 1.
Bit 2: Half transfer (HT) flag for channel 1.
Bit 3: Transfer error (TE) flag for channel 1.
Bit 4: Global interrupt flag for channel 2.
Bit 5: Transfer complete (TC) flag for channel 2.
Bit 6: Half transfer (HT) flag for channel 2.
Bit 7: Transfer error (TE) flag for channel 2.
Bit 8: Global interrupt flag for channel 3.
Bit 9: Transfer complete (TC) flag for channel 3.
Bit 10: Half transfer (HT) flag for channel 3.
Bit 11: Transfer error (TE) flag for channel 3.
Bit 12: global interrupt flag for channel 4.
Bit 13: Transfer complete (TC) flag for channel 4.
Bit 14: Half transfer (HT) flag for channel 4.
Bit 15: Transfer error (TE) flag for channel 4.
Bit 16: global interrupt flag for channel 5.
Bit 17: Transfer complete (TC) flag for channel 5.
Bit 18: Half transfer (HT) flag for channel 5.
Bit 19: Transfer error (TE) flag for channel 5.
Bit 20: Global interrupt flag for channel 6.
Bit 21: Transfer complete (TC) flag for channel 6.
Bit 22: Half transfer (HT) flag for channel 6.
Bit 23: Transfer error (TE) flag for channel 6.
Bit 24: Global interrupt flag for channel 7.
Bit 25: Transfer complete (TC) flag for channel 7.
Bit 26: Half transfer (HT) flag for channel 7.
Bit 27: Transfer error (TE) flag for channel 7.
DMA interrupt flag clear register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTEIF7
w |
CHTIF7
w |
CTCIF7
w |
CGIF7
w |
CTEIF6
w |
CHTIF6
w |
CTCIF6
w |
CGIF6
w |
CTEIF5
w |
CHTIF5
w |
CTCIF5
w |
CGIF5
w |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTEIF4
w |
CHTIF4
w |
CTCIF4
w |
CGIF4
w |
CTEIF3
w |
CHTIF3
w |
CTCIF3
w |
CGIF3
w |
CTEIF2
w |
CHTIF2
w |
CTCIF2
w |
CGIF2
w |
CTEIF1
w |
CHTIF1
w |
CTCIF1
w |
CGIF1
w |
Bit 0: Global interrupt flag clear for channel 1.
Bit 1: Transfer complete flag clear for channel 1.
Bit 2: Half transfer flag clear for channel 1.
Bit 3: Transfer error flag clear for channel 1.
Bit 4: Global interrupt flag clear for channel 2.
Bit 5: Transfer complete flag clear for channel 2.
Bit 6: Half transfer flag clear for channel 2.
Bit 7: Transfer error flag clear for channel 2.
Bit 8: Global interrupt flag clear for channel 3.
Bit 9: Transfer complete flag clear for channel 3.
Bit 10: Half transfer flag clear for channel 3.
Bit 11: Transfer error flag clear for channel 3.
Bit 12: Global interrupt flag clear for channel 4.
Bit 13: Transfer complete flag clear for channel 4.
Bit 14: Half transfer flag clear for channel 4.
Bit 15: Transfer error flag clear for channel 4.
Bit 16: Global interrupt flag clear for channel 5.
Bit 17: Transfer complete flag clear for channel 5.
Bit 18: Half transfer flag clear for channel 5.
Bit 19: Transfer error flag clear for channel 5.
Bit 20: Global interrupt flag clear for channel 6.
Bit 21: Transfer complete flag clear for channel 6.
Bit 22: Half transfer flag clear for channel 6.
Bit 23: Transfer error flag clear for channel 6.
Bit 24: Global interrupt flag clear for channel 7.
Bit 25: Transfer complete flag clear for channel 7.
Bit 26: Half transfer flag clear for channel 7.
Bit 27: Transfer error flag clear for channel 7.
DMA channel 1 configuration register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 1 number of data to transfer register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 1 peripheral address register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 1 memory address register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 2 configuration register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 2 number of data to transfer register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 2 peripheral address register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 2 memory address register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 3 configuration register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 3 number of data to transfer register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 3 peripheral address register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 3 memory address register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 4 configuration register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 4 number of data to transfer register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 4 peripheral address register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 4 memory address register
Offset: 0x50, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 5 configuration register
Offset: 0x58, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 5 number of data to transfer register
Offset: 0x5c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 5 peripheral address register
Offset: 0x60, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 5 memory address register
Offset: 0x64, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 6 configuration register
Offset: 0x6c, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 6 number of data to transfer register
Offset: 0x70, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 6 peripheral address register
Offset: 0x74, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 6 memory address register
Offset: 0x78, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 7 configuration register
Offset: 0x80, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 7 number of data to transfer register
Offset: 0x84, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 7 peripheral address register
Offset: 0x88, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 7 memory address register
Offset: 0x8c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
0x40020400: DMA register bank
28/161 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | DMA_ISR | ||||||||||||||||||||||||||||||||
0x4 | DMA_IFCR | ||||||||||||||||||||||||||||||||
0x8 | DMA_CCR1 | ||||||||||||||||||||||||||||||||
0xc | DMA_CNDTR1 | ||||||||||||||||||||||||||||||||
0x10 | DMA_CPAR1 | ||||||||||||||||||||||||||||||||
0x14 | DMA_CMAR1 | ||||||||||||||||||||||||||||||||
0x1c | DMA_CCR2 | ||||||||||||||||||||||||||||||||
0x20 | DMA_CNDTR2 | ||||||||||||||||||||||||||||||||
0x24 | DMA_CPAR2 | ||||||||||||||||||||||||||||||||
0x28 | DMA_CMAR2 | ||||||||||||||||||||||||||||||||
0x30 | DMA_CCR3 | ||||||||||||||||||||||||||||||||
0x34 | DMA_CNDTR3 | ||||||||||||||||||||||||||||||||
0x38 | DMA_CPAR3 | ||||||||||||||||||||||||||||||||
0x3c | DMA_CMAR3 | ||||||||||||||||||||||||||||||||
0x44 | DMA_CCR4 | ||||||||||||||||||||||||||||||||
0x48 | DMA_CNDTR4 | ||||||||||||||||||||||||||||||||
0x4c | DMA_CPAR4 | ||||||||||||||||||||||||||||||||
0x50 | DMA_CMAR4 | ||||||||||||||||||||||||||||||||
0x58 | DMA_CCR5 | ||||||||||||||||||||||||||||||||
0x5c | DMA_CNDTR5 | ||||||||||||||||||||||||||||||||
0x60 | DMA_CPAR5 | ||||||||||||||||||||||||||||||||
0x64 | DMA_CMAR5 | ||||||||||||||||||||||||||||||||
0x6c | DMA_CCR6 | ||||||||||||||||||||||||||||||||
0x70 | DMA_CNDTR6 | ||||||||||||||||||||||||||||||||
0x74 | DMA_CPAR6 | ||||||||||||||||||||||||||||||||
0x78 | DMA_CMAR6 | ||||||||||||||||||||||||||||||||
0x80 | DMA_CCR7 | ||||||||||||||||||||||||||||||||
0x84 | DMA_CNDTR7 | ||||||||||||||||||||||||||||||||
0x88 | DMA_CPAR7 | ||||||||||||||||||||||||||||||||
0x8c | DMA_CMAR7 |
DMA interrupt status register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEIF7
r |
HTIF7
r |
TCIF7
r |
GIF7
r |
TEIF6
r |
HTIF6
r |
TCIF6
r |
GIF6
r |
TEIF5
r |
HTIF5
r |
TCIF5
r |
GIF5
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TEIF4
r |
HTIF4
r |
TCIF4
r |
GIF4
r |
TEIF3
r |
HTIF3
r |
TCIF3
r |
GIF3
r |
TEIF2
r |
HTIF2
r |
TCIF2
r |
GIF2
r |
TEIF1
r |
HTIF1
r |
TCIF1
r |
GIF1
r |
Bit 0: Global interrupt flag for channel 1.
Bit 1: Transfer complete (TC) flag for channel 1.
Bit 2: Half transfer (HT) flag for channel 1.
Bit 3: Transfer error (TE) flag for channel 1.
Bit 4: Global interrupt flag for channel 2.
Bit 5: Transfer complete (TC) flag for channel 2.
Bit 6: Half transfer (HT) flag for channel 2.
Bit 7: Transfer error (TE) flag for channel 2.
Bit 8: Global interrupt flag for channel 3.
Bit 9: Transfer complete (TC) flag for channel 3.
Bit 10: Half transfer (HT) flag for channel 3.
Bit 11: Transfer error (TE) flag for channel 3.
Bit 12: global interrupt flag for channel 4.
Bit 13: Transfer complete (TC) flag for channel 4.
Bit 14: Half transfer (HT) flag for channel 4.
Bit 15: Transfer error (TE) flag for channel 4.
Bit 16: global interrupt flag for channel 5.
Bit 17: Transfer complete (TC) flag for channel 5.
Bit 18: Half transfer (HT) flag for channel 5.
Bit 19: Transfer error (TE) flag for channel 5.
Bit 20: Global interrupt flag for channel 6.
Bit 21: Transfer complete (TC) flag for channel 6.
Bit 22: Half transfer (HT) flag for channel 6.
Bit 23: Transfer error (TE) flag for channel 6.
Bit 24: Global interrupt flag for channel 7.
Bit 25: Transfer complete (TC) flag for channel 7.
Bit 26: Half transfer (HT) flag for channel 7.
Bit 27: Transfer error (TE) flag for channel 7.
DMA interrupt flag clear register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTEIF7
w |
CHTIF7
w |
CTCIF7
w |
CGIF7
w |
CTEIF6
w |
CHTIF6
w |
CTCIF6
w |
CGIF6
w |
CTEIF5
w |
CHTIF5
w |
CTCIF5
w |
CGIF5
w |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTEIF4
w |
CHTIF4
w |
CTCIF4
w |
CGIF4
w |
CTEIF3
w |
CHTIF3
w |
CTCIF3
w |
CGIF3
w |
CTEIF2
w |
CHTIF2
w |
CTCIF2
w |
CGIF2
w |
CTEIF1
w |
CHTIF1
w |
CTCIF1
w |
CGIF1
w |
Bit 0: Global interrupt flag clear for channel 1.
Bit 1: Transfer complete flag clear for channel 1.
Bit 2: Half transfer flag clear for channel 1.
Bit 3: Transfer error flag clear for channel 1.
Bit 4: Global interrupt flag clear for channel 2.
Bit 5: Transfer complete flag clear for channel 2.
Bit 6: Half transfer flag clear for channel 2.
Bit 7: Transfer error flag clear for channel 2.
Bit 8: Global interrupt flag clear for channel 3.
Bit 9: Transfer complete flag clear for channel 3.
Bit 10: Half transfer flag clear for channel 3.
Bit 11: Transfer error flag clear for channel 3.
Bit 12: Global interrupt flag clear for channel 4.
Bit 13: Transfer complete flag clear for channel 4.
Bit 14: Half transfer flag clear for channel 4.
Bit 15: Transfer error flag clear for channel 4.
Bit 16: Global interrupt flag clear for channel 5.
Bit 17: Transfer complete flag clear for channel 5.
Bit 18: Half transfer flag clear for channel 5.
Bit 19: Transfer error flag clear for channel 5.
Bit 20: Global interrupt flag clear for channel 6.
Bit 21: Transfer complete flag clear for channel 6.
Bit 22: Half transfer flag clear for channel 6.
Bit 23: Transfer error flag clear for channel 6.
Bit 24: Global interrupt flag clear for channel 7.
Bit 25: Transfer complete flag clear for channel 7.
Bit 26: Half transfer flag clear for channel 7.
Bit 27: Transfer error flag clear for channel 7.
DMA channel 1 configuration register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 1 number of data to transfer register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 1 peripheral address register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 1 memory address register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 2 configuration register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 2 number of data to transfer register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 2 peripheral address register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 2 memory address register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 3 configuration register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 3 number of data to transfer register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 3 peripheral address register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 3 memory address register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 4 configuration register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 4 number of data to transfer register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 4 peripheral address register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 4 memory address register
Offset: 0x50, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 5 configuration register
Offset: 0x58, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 5 number of data to transfer register
Offset: 0x5c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 5 peripheral address register
Offset: 0x60, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 5 memory address register
Offset: 0x64, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 6 configuration register
Offset: 0x6c, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 6 number of data to transfer register
Offset: 0x70, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 6 peripheral address register
Offset: 0x74, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 6 memory address register
Offset: 0x78, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 7 configuration register
Offset: 0x80, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM2MEM
rw |
PL
rw |
MSIZE
rw |
PSIZE
rw |
MINC
rw |
PINC
rw |
CIRC
rw |
DIR
rw |
TEIE
rw |
HTIE
rw |
TCIE
rw |
EN
rw |
Bit 0: Channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by1setting the CTEIFx bit of the DMA_IFCR register). Note: This bit is set and cleared by software..
Bit 1: Transfer complete interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 2: Half transfer interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 3: Transfer error interrupt enable Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 4: Data transfer direction This bit must be set only in memory-to-peripheral and peripheral-to-memory modes. Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 5: Circular mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
Bit 6: Peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this bit identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 7: Memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this bit identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bit identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 8-9: Peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this bitfield identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 10-11: Memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this bitfield identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bits 12-13: Priority level Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
Bit 14: Memory-to-memory mode Note: This bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1)..
DMA channel 7 number of data to transfer register
Offset: 0x84, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDT
rw |
DMA channel 7 peripheral address register
Offset: 0x88, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the peripheral data register from/to which the data is read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE[1:0] = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this bitfield identifies the peripheral destination address if DIR1= 1 and the peripheral source address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
DMA channel 7 memory address register
Offset: 0x8c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Peripheral address It contains the base address of the memory from/to which the data is read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE[1:0] = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this bitfield identifies the memory source address if DIR = 1 and the memory destination address if DIR1=10. In peripheral-to-peripheral mode, this bitfield identifies the peripheral source address if DIR1=11 and the peripheral destination address if DIR = 0. Note: This bitfield is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1)..
0x40020800: DMAMUX address block description
16/136 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | DMAMUX_C0CR | ||||||||||||||||||||||||||||||||
0x4 | DMAMUX_C1CR | ||||||||||||||||||||||||||||||||
0x8 | DMAMUX_C2CR | ||||||||||||||||||||||||||||||||
0xc | DMAMUX_C3CR | ||||||||||||||||||||||||||||||||
0x10 | DMAMUX_C4CR | ||||||||||||||||||||||||||||||||
0x14 | DMAMUX_C5CR | ||||||||||||||||||||||||||||||||
0x18 | DMAMUX_C6CR | ||||||||||||||||||||||||||||||||
0x1c | DMAMUX_C7CR | ||||||||||||||||||||||||||||||||
0x20 | DMAMUX_C8CR | ||||||||||||||||||||||||||||||||
0x24 | DMAMUX_C9CR | ||||||||||||||||||||||||||||||||
0x28 | DMAMUX_C10CR | ||||||||||||||||||||||||||||||||
0x2c | DMAMUX_C11CR | ||||||||||||||||||||||||||||||||
0x80 | DMAMUX_CSR | ||||||||||||||||||||||||||||||||
0x84 | DMAMUX_CFR | ||||||||||||||||||||||||||||||||
0x100 | DMAMUX_RG0CR | ||||||||||||||||||||||||||||||||
0x104 | DMAMUX_RG1CR | ||||||||||||||||||||||||||||||||
0x108 | DMAMUX_RG2CR | ||||||||||||||||||||||||||||||||
0x10c | DMAMUX_RG3CR | ||||||||||||||||||||||||||||||||
0x140 | DMAMUX_RGSR | ||||||||||||||||||||||||||||||||
0x144 | DMAMUX_RGCFR |
DMAMUX request line multiplexer channel 0 configuration register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 1 configuration register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 2 configuration register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 3 configuration register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 4 configuration register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 5 configuration register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 6 configuration register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 7 configuration register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 8 configuration register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 9 configuration register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 10 configuration register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer channel 11 configuration register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYNC_ID
rw |
NBREQ
rw |
SPOL
rw |
SE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EGE
rw |
SOIE
rw |
DMAREQ_ID
rw |
Bits 0-6: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources..
Bit 8: Synchronization overrun interrupt enable.
Bit 9: Event generation enable.
Bit 16: Synchronization enable.
Bits 17-18: Synchronization polarity Defines the edge polarity of the selected synchronization input:.
Bits 19-23: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field must only be written when both SE and EGE bits are low..
Bits 24-28: Synchronization identification Selects the synchronization input (see Table137: DMAMUX: assignment of synchronization inputs to resources)..
DMAMUX request line multiplexer interrupt channel status register
Offset: 0x80, size: 32, reset: 0x00000000, access: Unspecified
12/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOF11
r |
SOF10
r |
SOF9
r |
SOF8
r |
SOF7
r |
SOF6
r |
SOF5
r |
SOF4
r |
SOF3
r |
SOF2
r |
SOF1
r |
SOF0
r |
Bit 0: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 1: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 2: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 3: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 4: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 5: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 6: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 7: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 8: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 9: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 10: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
Bit 11: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register..
DMAMUX request line multiplexer interrupt clear flag register
Offset: 0x84, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CSOF11
w |
CSOF10
w |
CSOF9
w |
CSOF8
w |
CSOF7
w |
CSOF6
w |
CSOF5
w |
CSOF4
w |
CSOF3
w |
CSOF2
w |
CSOF1
w |
CSOF0
w |
Bit 0: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 1: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 2: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 3: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 4: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 5: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 6: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 7: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 8: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 9: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 10: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
Bit 11: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register..
DMAMUX request generator channel 0 configuration register
Offset: 0x100, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNBREQ
rw |
GPOL
rw |
GE
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OIE
rw |
SIG_ID
rw |
Bits 0-4: Signal identification Selects the DMA request trigger input used for the channel x of the DMA request generator.
Bit 8: Trigger overrun interrupt enable.
Bit 16: DMA request generator channel x enable.
Bits 17-18: DMA request generator trigger polarity Defines the edge polarity of the selected trigger input.
Bits 19-23: Number of DMA requests to be generated (minus 1) Defines the number of DMA requests to be generated after a trigger event. The actual number of generated DMA requests is GNBREQ +1. Note: This field must be written only when GE bit is disabled..
DMAMUX request generator channel 1 configuration register
Offset: 0x104, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNBREQ
rw |
GPOL
rw |
GE
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OIE
rw |
SIG_ID
rw |
Bits 0-4: Signal identification Selects the DMA request trigger input used for the channel x of the DMA request generator.
Bit 8: Trigger overrun interrupt enable.
Bit 16: DMA request generator channel x enable.
Bits 17-18: DMA request generator trigger polarity Defines the edge polarity of the selected trigger input.
Bits 19-23: Number of DMA requests to be generated (minus 1) Defines the number of DMA requests to be generated after a trigger event. The actual number of generated DMA requests is GNBREQ +1. Note: This field must be written only when GE bit is disabled..
DMAMUX request generator channel 2 configuration register
Offset: 0x108, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNBREQ
rw |
GPOL
rw |
GE
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OIE
rw |
SIG_ID
rw |
Bits 0-4: Signal identification Selects the DMA request trigger input used for the channel x of the DMA request generator.
Bit 8: Trigger overrun interrupt enable.
Bit 16: DMA request generator channel x enable.
Bits 17-18: DMA request generator trigger polarity Defines the edge polarity of the selected trigger input.
Bits 19-23: Number of DMA requests to be generated (minus 1) Defines the number of DMA requests to be generated after a trigger event. The actual number of generated DMA requests is GNBREQ +1. Note: This field must be written only when GE bit is disabled..
DMAMUX request generator channel 3 configuration register
Offset: 0x10c, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNBREQ
rw |
GPOL
rw |
GE
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OIE
rw |
SIG_ID
rw |
Bits 0-4: Signal identification Selects the DMA request trigger input used for the channel x of the DMA request generator.
Bit 8: Trigger overrun interrupt enable.
Bit 16: DMA request generator channel x enable.
Bits 17-18: DMA request generator trigger polarity Defines the edge polarity of the selected trigger input.
Bits 19-23: Number of DMA requests to be generated (minus 1) Defines the number of DMA requests to be generated after a trigger event. The actual number of generated DMA requests is GNBREQ +1. Note: This field must be written only when GE bit is disabled..
DMAMUX request generator interrupt status register
Offset: 0x140, size: 32, reset: 0x00000000, access: Unspecified
4/4 fields covered.
Bit 0: Trigger overrun event flag The flag is set when a new trigger event occurs on DMA request generator channel x, before the request counter underrun (the internal request counter programmed via the GNBREQ field of the DMAMUX_RGxCR register). The flag is cleared by writing 1 to the corresponding COFx bit in the DMAMUX_RGCFR register..
Bit 1: Trigger overrun event flag The flag is set when a new trigger event occurs on DMA request generator channel x, before the request counter underrun (the internal request counter programmed via the GNBREQ field of the DMAMUX_RGxCR register). The flag is cleared by writing 1 to the corresponding COFx bit in the DMAMUX_RGCFR register..
Bit 2: Trigger overrun event flag The flag is set when a new trigger event occurs on DMA request generator channel x, before the request counter underrun (the internal request counter programmed via the GNBREQ field of the DMAMUX_RGxCR register). The flag is cleared by writing 1 to the corresponding COFx bit in the DMAMUX_RGCFR register..
Bit 3: Trigger overrun event flag The flag is set when a new trigger event occurs on DMA request generator channel x, before the request counter underrun (the internal request counter programmed via the GNBREQ field of the DMAMUX_RGxCR register). The flag is cleared by writing 1 to the corresponding COFx bit in the DMAMUX_RGCFR register..
DMAMUX request generator interrupt clear flag register
Offset: 0x144, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 0: Clear trigger overrun event flag Writing 1 in each bit clears the corresponding overrun flag OFx in the DMAMUX_RGSR register..
Bit 1: Clear trigger overrun event flag Writing 1 in each bit clears the corresponding overrun flag OFx in the DMAMUX_RGSR register..
Bit 2: Clear trigger overrun event flag Writing 1 in each bit clears the corresponding overrun flag OFx in the DMAMUX_RGSR register..
Bit 3: Clear trigger overrun event flag Writing 1 in each bit clears the corresponding overrun flag OFx in the DMAMUX_RGSR register..
0x40021800: EXTI register block
0/202 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | EXTI_RTSR1 | ||||||||||||||||||||||||||||||||
0x4 | EXTI_FTSR1 | ||||||||||||||||||||||||||||||||
0x8 | EXTI_SWIER1 | ||||||||||||||||||||||||||||||||
0xc | EXTI_RPR1 | ||||||||||||||||||||||||||||||||
0x10 | EXTI_FPR1 | ||||||||||||||||||||||||||||||||
0x60 | EXTI_EXTICR1 | ||||||||||||||||||||||||||||||||
0x64 | EXTI_EXTICR2 | ||||||||||||||||||||||||||||||||
0x68 | EXTI_EXTICR3 | ||||||||||||||||||||||||||||||||
0x6c | EXTI_EXTICR4 | ||||||||||||||||||||||||||||||||
0x80 | EXTI_IMR1 | ||||||||||||||||||||||||||||||||
0x84 | EXTI_EMR1 | ||||||||||||||||||||||||||||||||
0x90 | EXTI_IMR2 | ||||||||||||||||||||||||||||||||
0x94 | EXTI_EMR2 |
EXTI rising trigger selection register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RT21
rw |
RT20
rw |
RT19
rw |
RT18
rw |
RT17
rw |
RT16
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RT15
rw |
RT14
rw |
RT13
rw |
RT12
rw |
RT11
rw |
RT10
rw |
RT9
rw |
RT8
rw |
RT7
rw |
RT6
rw |
RT5
rw |
RT4
rw |
RT3
rw |
RT2
rw |
RT1
rw |
RT0
rw |
Bit 0: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 1: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 2: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 3: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 4: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 5: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 6: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 7: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 8: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 9: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 10: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 11: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 12: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 13: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 14: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 15: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 16: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 17: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 18: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 19: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 20: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 21: Rising trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
EXTI falling trigger selection register 1
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FT21
rw |
FT20
rw |
FT19
rw |
FT18
rw |
FT17
rw |
FT16
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
FT15
rw |
FT14
rw |
FT13
rw |
FT12
rw |
FT11
rw |
FT10
rw |
FT9
rw |
FT8
rw |
FT7
rw |
FT6
rw |
FT5
rw |
FT4
rw |
FT3
rw |
FT2
rw |
FT1
rw |
FT0
rw |
Bit 0: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 1: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 2: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 3: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 4: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 5: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 6: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 7: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 8: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 9: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 10: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 11: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 12: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 13: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 14: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 15: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 16: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 17: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 18: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 19: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 20: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 21: Falling trigger event configuration bit of configurable line x (x1=1211to10) Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
EXTI software interrupt event register 1
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWI21
rw |
SWI20
rw |
SWI19
rw |
SWI18
rw |
SWI17
rw |
SWI16
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWI15
rw |
SWI14
rw |
SWI13
rw |
SWI12
rw |
SWI11
rw |
SWI10
rw |
SWI9
rw |
SWI8
rw |
SWI7
rw |
SWI6
rw |
SWI5
rw |
SWI4
rw |
SWI3
rw |
SWI2
rw |
SWI1
rw |
SWI0
rw |
Bit 0: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 1: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 2: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 3: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 4: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 5: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 6: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 7: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 8: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 9: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 10: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 11: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 12: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 13: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 14: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 15: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 16: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 17: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 18: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 19: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 20: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 21: Software rising edge event trigger on line x (x1=1211to10) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
EXTI rising edge pending register 1
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPIF21
rw |
RPIF20
rw |
RPIF19
rw |
RPIF18
rw |
RPIF17
rw |
RPIF16
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RPIF15
rw |
RPIF14
rw |
RPIF13
rw |
RPIF12
rw |
RPIF11
rw |
RPIF10
rw |
RPIF9
rw |
RPIF8
rw |
RPIF7
rw |
RPIF6
rw |
RPIF5
rw |
RPIF4
rw |
RPIF3
rw |
RPIF2
rw |
RPIF1
rw |
RPIF0
rw |
Bit 0: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 1: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 2: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 3: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 4: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 5: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 6: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 7: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 8: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 9: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 10: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 11: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 12: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 13: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 14: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 15: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 16: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 17: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 18: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 19: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 20: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 21: Rising edge event pending for configurable line x (x1=1211to10) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
EXTI falling edge pending register 1
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPIF21
rw |
FPIF20
rw |
FPIF19
rw |
FPIF18
rw |
FPIF17
rw |
FPIF16
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
FPIF15
rw |
FPIF14
rw |
FPIF13
rw |
FPIF12
rw |
FPIF11
rw |
FPIF10
rw |
FPIF9
rw |
FPIF8
rw |
FPIF7
rw |
FPIF6
rw |
FPIF5
rw |
FPIF4
rw |
FPIF3
rw |
FPIF2
rw |
FPIF1
rw |
FPIF0
rw |
Bit 0: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 1: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 2: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 3: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 4: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 5: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 6: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 7: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 8: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 9: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 10: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 11: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 12: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 13: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 14: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 15: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 16: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 17: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 18: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 19: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 20: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
Bit 21: Falling edge event pending for configurable line x (x1=1211to10) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. Bits 18 and 19 are available only on STM32U0x3xx devices. They are reserved on STM32U031xx devices..
EXTI external interrupt selection register 1
Offset: 0x60, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXTI3
rw |
EXTI2
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EXTI1
rw |
EXTI0
rw |
Bits 0-7: EXTI0 GPIO port selection These bits are written by software to select the source input for EXTI0 external interrupt. Others reserved.
Bits 8-15: EXTI1 GPIO port selection These bits are written by software to select the source input for EXTI1 external interrupt. Others reserved.
Bits 16-23: EXTI2 GPIO port selection These bits are written by software to select the source input for EXTI2 external interrupt. Others reserved.
Bits 24-31: EXTI3 GPIO port selection These bits are written by software to select the source input for EXTI3 external interrupt. Others reserved.
EXTI external interrupt selection register 2
Offset: 0x64, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXTI7
rw |
EXTI6
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EXTI5
rw |
EXTI4
rw |
Bits 0-7: EXTI4 GPIO port selection These bits are written by software to select the source input for EXTI4 external interrupt. Others reserved.
Bits 8-15: EXTI5 GPIO port selection These bits are written by software to select the source input for EXTI5 external interrupt. Others reserved.
Bits 16-23: EXTI6 GPIO port selection These bits are written by software to select the source input for EXTI6 external interrupt. Others reserved.
Bits 24-31: EXTI7 GPIO port selection These bits are written by software to select the source input for EXTI7 external interrupt. Others reserved.
EXTI external interrupt selection register 3
Offset: 0x68, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXTI11
rw |
EXTI10
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EXTI9
rw |
EXTI8
rw |
Bits 0-7: EXTI8 GPIO port selection These bits are written by software to select the source input for EXTI8 external interrupt. Others reserved.
Bits 8-15: EXTI9 GPIO port selection These bits are written by software to select the source input for EXTI9 external interrupt. Others reserved.
Bits 16-23: EXTI10 GPIO port selection These bits are written by software to select the source input for EXTI10 external interrupt. Others reserved.
Bits 24-31: EXTI11 GPIO port selection These bits are written by software to select the source input for EXTI11 external interrupt. Others reserved.
EXTI external interrupt selection register 4
Offset: 0x6c, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXTI15
rw |
EXTI14
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EXTI13
rw |
EXTI12
rw |
Bits 0-7: EXTI12 GPIO port selection These bits are written by software to select the source input for EXTI12 external interrupt. Others reserved.
Bits 8-15: EXTI13 GPIO port selection These bits are written by software to select the source input for EXTI13 external interrupt. Others reserved.
Bits 16-23: EXTI14 GPIO port selection These bits are written by software to select the source input for EXTI14 external interrupt. Others reserved.
Bits 24-31: EXTI15 GPIO port selection These bits are written by software to select the source input for EXTI15 external interrupt. Others reserved.
EXTI CPU wake-up with interrupt mask register
Offset: 0x80, size: 32, reset: 0xFFF80000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IM31
rw |
IM30
rw |
IM29
rw |
IM28
rw |
IM27
rw |
IM26
rw |
IM25
rw |
IM24
rw |
IM23
rw |
IM22
rw |
IM21
rw |
IM20
rw |
IM19
rw |
IM18
rw |
IM17
rw |
IM16
rw |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IM15
rw |
IM14
rw |
IM13
rw |
IM12
rw |
IM11
rw |
IM10
rw |
IM9
rw |
IM8
rw |
IM7
rw |
IM6
rw |
IM5
rw |
IM4
rw |
IM3
rw |
IM2
rw |
IM1
rw |
IM0
rw |
Bit 0: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 1: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 2: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 3: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 4: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 5: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 6: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 7: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 8: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 9: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 10: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 11: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 12: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 13: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 14: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 15: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 16: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 17: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 18: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 19: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 20: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 21: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 22: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 23: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 24: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 25: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 26: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 27: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 28: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 29: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 30: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 31: CPU wake-up with interrupt mask on line x (x1=131 to 0) Setting/clearing each bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
EXTI CPU wake-up with event mask register
Offset: 0x84, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM31
rw |
EM30
rw |
EM29
rw |
EM28
rw |
EM27
rw |
EM26
rw |
EM25
rw |
EM24
rw |
EM23
rw |
EM22
rw |
EM21
rw |
EM20
rw |
EM19
rw |
EM18
rw |
EM17
rw |
EM16
rw |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
EM15
rw |
EM14
rw |
EM13
rw |
EM12
rw |
EM11
rw |
EM10
rw |
EM9
rw |
EM8
rw |
EM7
rw |
EM6
rw |
EM5
rw |
EM4
rw |
EM3
rw |
EM2
rw |
EM1
rw |
EM0
rw |
Bit 0: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 1: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 2: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 3: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 4: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 5: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 6: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 7: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 8: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 9: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 10: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 11: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 12: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 13: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 14: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 15: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 16: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 17: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 18: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 19: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 20: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 21: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 22: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 23: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 24: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 25: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 26: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 27: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 28: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 29: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 30: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
Bit 31: CPU wake-up with event generation mask on line x (x1=1311to10) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bits 18, 19, 22 and 26 are available only on STM32U0x3xx devices, they are reserved on STM32U031xx devices..
EXTI CPU wake-up with interrupt mask register
Offset: 0x90, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/6 fields covered.
Bit 0: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 1: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 2: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 3: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 4: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 5: CPU wake-up with interrupt mask on line x (x1=1371to132) Setting/clearing this bit unmasks/masks the CPU wake-up with interrupt, by an event on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
EXTI CPU wake-up with event mask register
Offset: 0x94, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 0: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 1: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 2: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 3: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 4: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
Bit 5: CPU wake-up with event generation mask on line x, (x1=1371to132) Setting/clearing each bit unmasks/masks the CPU wake-up with event generation on the corresponding line. Bit IM36 is available only on STM32U0x3xx devices, it is reserved on STM32U031xx devices..
0x40022000: Mamba FLASH register block
4/64 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | FLASH_ACR | ||||||||||||||||||||||||||||||||
0x8 | FLASH_KEYR | ||||||||||||||||||||||||||||||||
0xc | FLASH_OPTKEYR | ||||||||||||||||||||||||||||||||
0x10 | FLASH_SR | ||||||||||||||||||||||||||||||||
0x14 | FLASH_CR | ||||||||||||||||||||||||||||||||
0x18 | FLASH_ECCR | ||||||||||||||||||||||||||||||||
0x20 | FLASH_OPTR | ||||||||||||||||||||||||||||||||
0x2c | FLASH_WRP1AR | ||||||||||||||||||||||||||||||||
0x30 | FLASH_WRP1BR | ||||||||||||||||||||||||||||||||
0x80 | FLASH_SECR |
FLASH access control register
Offset: 0x0, size: 32, reset: 0x00040600, access: Unspecified
0/6 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBG_SWEN
rw |
EMPTY
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ICRST
rw |
ICEN
rw |
PRFTEN
rw |
LATENCY
rw |
Bits 0-2: Flash memory access latency The value in this bitfield represents the number of CPU wait states when accessing the flash memory. Other: Reserved A new write into the bitfield becomes effective when it returns the same value upon read..
Bit 8: CPU Prefetch enable.
Bit 9: CPU Instruction cache enable.
Bit 11: CPU Instruction cache reset This bit can be written only when the instruction cache is disabled..
Bit 16: Main flash memory area empty This bit indicates whether the first location of the main flash memory area is erased or has a programmed value. The bit can be set and reset by software..
Bit 18: Debug access software enable Software may use this bit to enable/disable the debugger read access..
FLASH key register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
FLASH option key register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
FLASH status register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
2/13 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFGBSY
r |
BSY1
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OPTVERR
rw |
RDERR
rw |
FASTERR
rw |
MISSERR
rw |
PGSERR
rw |
SIZERR
rw |
PGAERR
rw |
WRPERR
rw |
PROGERR
rw |
OPERR
rw |
EOP
rw |
Bit 0: End of operation Set by hardware when one or more flash memory operation (programming / erase) has been completed successfully. This bit is set only if the end of operation interrupts are enabled (EOPIE=1). Cleared by writing 1..
Bit 1: Operation error Set by hardware when a flash memory operation (program / erase) completes unsuccessfully. This bit is set only if error interrupts are enabled (ERRIE=1). Cleared by writing 1..
Bit 3: Programming error Set by hardware when a double-word address to be programmed contains a value different from '0xFFFF FFFF' before programming, except if the data to write is '0x0000 0000'. Cleared by writing 1..
Bit 4: Write protection error Set by hardware when an address to be erased/programmed belongs to a write-protected part (by WRP, PCROP or RDP Level 1) of the flash memory. Cleared by writing 1..
Bit 5: Programming alignment error Set by hardware when the data to program cannot be contained in the same double word (64-bit) flash memory in case of standard programming, or if there is a change of page during fast programming. Cleared by writing 1..
Bit 6: Size error Set by hardware when the size of the access is a byte or half-word during a program or a fast program sequence. Only double word programming is allowed (consequently: word access). Cleared by writing 1..
Bit 7: Programming sequence error Set by hardware when a write access to the flash memory is performed by the code while PG or FSTPG have not been set previously. Set also by hardware when PROGERR, SIZERR, PGAERR, WRPERR, MISSERR or FASTERR is set due to a previous programming error. Cleared by writing 1..
Bit 8: Fast programming data miss error In Fast programming mode, 16 double words (128 bytes) must be sent to flash memory successively, and the new data must be sent to the logic control before the current data is fully programmed. MISSERR is set by hardware when the new data is not present in time. Cleared by writing 1..
Bit 9: Fast programming error Set by hardware when a fast programming sequence (activated by FSTPG) is interrupted due to an error (alignment, size, write protection or data miss). The corresponding status bit (PGAERR, SIZERR, WRPERR or MISSERR) is set at the same time. Cleared by writing 1..
Bit 14: PCROP read error Set by hardware when an address to be read belongs to a read protected area of the flash memory (PCROP protection). An interrupt is generated if RDERRIE is set in FLASH_CR. Cleared by writing 1..
Bit 15: Option and Engineering bits loading validity error.
Bit 16: Busy This flag indicates that a flash memory operation requested by FLASH control register (FLASH_CR) is in progress. This bit is set at the beginning of the flash memory operation, and cleared when the operation finishes or when an error occurs..
Bit 18: Programming or erase configuration busy. This flag is set and cleared by hardware. It is set when the first word is sent for program or when setting the STRT bit of FLASH control register (FLASH_CR) for erase. It is cleared when the flash memory program or erase operation completes or ends with an error. When set, launching any other operation through the FLASH control register (FLASH_CR) is impossible, and must be postponed (a programming or erase operation is ongoing). When cleared, the program and erase settings in the FLASH control register (FLASH_CR) can be modified..
FLASH control register
Offset: 0x14, size: 32, reset: 0xC0000000, access: Unspecified
0/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOCK
rw |
OPTLOCK
rw |
SEC_PROT
rw |
OBL_LAUNCH
rw |
RDERRIE
rw |
ERRIE
rw |
EOPIE
rw |
FSTPG
rw |
OPTSTRT
rw |
STRT
rw |
||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PNB
rw |
MER1
rw |
PER
rw |
PG
rw |
Bit 0: Flash memory programming enable.
Bit 1: Page erase enable.
Bit 2: Mass erase When set, this bit triggers the mass erase, that is, all user pages..
Bits 3-9: Page number selection These bits select the page to erase: ... Note: Values corresponding to addresses outside the main memory are not allowed..
Bit 16: Start erase operation This bit triggers an erase operation when set. This bit is possible to set only by software and to clear only by hardware. The hardware clears it when one of BSY1 and BSY2 flags in the FLASH_SR register transits to zero..
Bit 17: Start of modification of option bytes This bit triggers an options operation when set. This bit is set only by software, and is cleared when the BSY1 bit is cleared in FLASH_SR..
Bit 18: Fast programming enable.
Bit 24: End-of-operation interrupt enable This bit enables the interrupt generation upon setting the EOP flag in the FLASH_SR register..
Bit 25: Error interrupt enable This bit enables the interrupt generation upon setting the OPERR flag in the FLASH_SR register..
Bit 26: PCROP read error interrupt enable This bit enables the interrupt generation upon setting the RDERR flag in the FLASH_SR register..
Bit 27: Option byte load launch When set, this bit triggers the load of option bytes into option registers. It is automatically cleared upon the completion of the load. The high state of the bit indicates pending option byte load. The bit cannot be cleared by software. It cannot be written as long as OPTLOCK is set..
Bit 28: Securable memory area protection enable This bit enables the protection on securable area, provided that a non-null securable memory area size (SEC_SIZE[4:0]) is defined in option bytes. This bit is possible to set only by software and to clear only through a system reset..
Bit 30: Options Lock This bit is set only. When set, all bits concerning user option in FLASH_CR register and so option page are locked. This bit is cleared by hardware after detecting the unlock sequence. The LOCK bit must be cleared before doing the unlock sequence for OPTLOCK bit. In case of an unsuccessful unlock operation, this bit remains set until the next reset..
Bit 31: FLASH_CR Lock This bit is set only. When set, the FLASH_CR register is locked. It is cleared by hardware after detecting the unlock sequence. In case of an unsuccessful unlock operation, this bit remains set until the next system reset..
FLASH ECC register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
2/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ECCD
rw |
ECCC
rw |
ECCCIE
rw |
SYSF_ECC
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ADDR_ECC
r |
Bits 0-13: ECC fail double-word address offset In case of ECC error or ECC correction detected, this bitfield contains double-word offset (multiple of 64 bits) to main Flash memory..
Bit 20: System Flash memory ECC fail This bit indicates that the ECC error correction or double ECC error detection is located in the system Flash memory..
Bit 24: ECC correction interrupt enable.
Bit 30: ECC correction Set by hardware when one ECC error has been detected and corrected. An interrupt is generated if ECCIE is set. Cleared by writing 1..
Bit 31: ECC detection Set by hardware when two ECC errors have been detected. When this bit is set, a NMI is generated. Cleared by writing 1..
FLASH option register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IRHEN
rw |
NRST_MODE
rw |
NBOOT0
rw |
NBOOT1
rw |
NBOOT_SEL
rw |
BKPSRAM_HW_ERASE_DISABLE
rw |
RAM_PARITY_CHECK
rw |
BDRST
rw |
WWDG_SW
rw |
IWDG_STDBY
rw |
IWDG_STOP
rw |
IWDG_SW
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
NRST_SHDW
rw |
NRST_STDBY
rw |
NRST_STOP
rw |
BORR_LEV
rw |
RDP
rw |
Bits 0-7: Read protection level Other: Level 1, memories read protection active.
Bits 8-10: BOR reset level.
Bit 13: Reset generated when entering Stop mode.
Bit 14: Reset generated when entering Standby mode.
Bit 15: Reset generated when entering Shutdown mode.
Bit 16: Independent watchdog selection.
Bit 17: Independent watchdog counter freeze in Stop mode.
Bit 18: Independent watchdog counter freeze in Standby mode.
Bit 19: Window watchdog selection.
Bit 21: Backup domain reset.
Bit 22: SRAM parity check control enable/disable.
Bit 23: Backup SRAM erase prevention.
Bit 24: BOOT0 signal source selection This option bit defines the source of the BOOT0 signal..
Bit 25: Boot configuration Together with the BOOT0 pin or option bit NBOOT0 (depending on NBOOT_SEL option bit configuration), this bit selects boot mode from the main flash memory, SRAM or the system memory. Refer to Section12.5: Boot configuration..
Bit 26: NBOOT0 option bit.
Bits 27-28: NRST pin configuration.
Bit 29: Internal reset holder enable bit.
FLASH WRP area A address register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WRP1A_END
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
WRP1A_STRT
rw |
Bits 0-6: WRP area A start offset This bitfield contains the offset of the first page of the WRP area A. Note: The number of effective bits depends on the size of the flash memory in the device..
Bits 16-22: WRP area A end offset This bitfield contains the offset of the last page of the WRP area A. Note: The number of effective bits depends on the size of the flash memory in the device..
FLASH WRP area B address register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WRP1B_END
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
WRP1B_STRT
rw |
Bits 0-6: WRP area B start offset This bitfield contains the offset of the first page of the WRP area B. Note: The number of effective bits depends on the size of the flash memory in the device..
Bits 16-22: WRP area B end offset This bitfield contains the offset of the last page of the WRP area B. Note: The number of effective bits depends on the size of the flash memory in the device..
FLASH security register
Offset: 0x80, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HDP1EN
rw |
BOOT_LOCK
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
HDP1_PEND
rw |
Bits 0-6: Last page of the first hide protection area.
Bit 16: used to force boot from user area If the bit is set in association with RDP level 1, the debug capabilities are disabled, except in the case of a bad OBL (mismatch)..
Bits 24-31: Hide protection area enable.
0x50000000: GPIOA address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOA_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOA_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOA_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOA_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOA_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOA_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOA_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOA_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOA_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOA_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOA_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x50000400: GPIOB address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOB_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOB_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOB_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOB_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOB_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOB_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOB_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOB_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOB_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOB_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOB_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x50000800: GPIOC address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOC_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOC_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOC_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOC_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOC_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOC_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOC_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOC_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOC_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOC_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOC_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x50000c00: GPIOD address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOD_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOD_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOD_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOD_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOD_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOD_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOD_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOD_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOD_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOD_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOD_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x50001000: GPIOE address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOE_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOE_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOE_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOE_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOE_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOE_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOE_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOE_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOE_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOE_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOE_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x50001400: GPIOF address block description
16/177 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | GPIOF_MODER | ||||||||||||||||||||||||||||||||
0x4 | GPIOF_OTYPER | ||||||||||||||||||||||||||||||||
0x8 | GPIOF_OSPEEDR | ||||||||||||||||||||||||||||||||
0xc | GPIOF_PUPDR | ||||||||||||||||||||||||||||||||
0x10 | GPIOF_IDR | ||||||||||||||||||||||||||||||||
0x14 | GPIOF_ODR | ||||||||||||||||||||||||||||||||
0x18 | GPIOF_BSRR | ||||||||||||||||||||||||||||||||
0x1c | GPIOF_LCKR | ||||||||||||||||||||||||||||||||
0x20 | GPIOF_AFRL | ||||||||||||||||||||||||||||||||
0x24 | GPIOF_AFRH | ||||||||||||||||||||||||||||||||
0x28 | GPIOF_BRR |
GPIO port mode register
Offset: 0x0, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODE15
rw |
MODE14
rw |
MODE13
rw |
MODE12
rw |
MODE11
rw |
MODE10
rw |
MODE9
rw |
MODE8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MODE7
rw |
MODE6
rw |
MODE5
rw |
MODE4
rw |
MODE3
rw |
MODE2
rw |
MODE1
rw |
MODE0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O mode..
GPIO port output type register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OT15
rw |
OT14
rw |
OT13
rw |
OT12
rw |
OT11
rw |
OT10
rw |
OT9
rw |
OT8
rw |
OT7
rw |
OT6
rw |
OT5
rw |
OT4
rw |
OT3
rw |
OT2
rw |
OT1
rw |
OT0
rw |
Bit 0: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 1: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 2: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 3: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 4: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 5: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 6: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 7: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 8: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 9: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 10: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 11: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 12: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 13: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 14: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
Bit 15: Port x configuration I/O pin y These bits are written by software to configure the I/O output type..
GPIO port output speed register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSPEED15
rw |
OSPEED14
rw |
OSPEED13
rw |
OSPEED12
rw |
OSPEED11
rw |
OSPEED10
rw |
OSPEED9
rw |
OSPEED8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OSPEED7
rw |
OSPEED6
rw |
OSPEED5
rw |
OSPEED4
rw |
OSPEED3
rw |
OSPEED2
rw |
OSPEED1
rw |
OSPEED0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O output speed. Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed...
GPIO port pull-up/pull-down register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUPD15
rw |
PUPD14
rw |
PUPD13
rw |
PUPD12
rw |
PUPD11
rw |
PUPD10
rw |
PUPD9
rw |
PUPD8
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PUPD7
rw |
PUPD6
rw |
PUPD5
rw |
PUPD4
rw |
PUPD3
rw |
PUPD2
rw |
PUPD1
rw |
PUPD0
rw |
Bits 0-1: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 2-3: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 4-5: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 6-7: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 8-9: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 10-11: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 12-13: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 14-15: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 16-17: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 18-19: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 20-21: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 22-23: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 24-25: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 26-27: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 28-29: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
Bits 30-31: Port x configuration I/O pin y These bits are written by software to configure the I/O pull-up or pull-down.
GPIO port input data register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID15
r |
ID14
r |
ID13
r |
ID12
r |
ID11
r |
ID10
r |
ID9
r |
ID8
r |
ID7
r |
ID6
r |
ID5
r |
ID4
r |
ID3
r |
ID2
r |
ID1
r |
ID0
r |
Bit 0: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 1: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 2: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 3: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 4: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 5: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 6: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 7: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 8: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 9: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 10: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 11: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 12: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 13: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 14: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
Bit 15: Port x input data I/O pin y These bits are read-only. They contain the input value of the corresponding I/O port..
GPIO port output data register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD15
rw |
OD14
rw |
OD13
rw |
OD12
rw |
OD11
rw |
OD10
rw |
OD9
rw |
OD8
rw |
OD7
rw |
OD6
rw |
OD5
rw |
OD4
rw |
OD3
rw |
OD2
rw |
OD1
rw |
OD0
rw |
Bit 0: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 1: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 2: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 3: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 4: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 5: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 6: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 7: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 8: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 9: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 10: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 11: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 12: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 13: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 14: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
Bit 15: Port output data I/O pin y These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the GPIOx_BSRR register (x = A..F)..
GPIO port bit set/reset register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/32 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BS15
w |
BS14
w |
BS13
w |
BS12
w |
BS11
w |
BS10
w |
BS9
w |
BS8
w |
BS7
w |
BS6
w |
BS5
w |
BS4
w |
BS3
w |
BS2
w |
BS1
w |
BS0
w |
Bit 0: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x set I/O pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 16: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 17: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 18: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 19: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 20: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 21: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 22: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 23: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 24: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 25: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 26: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 27: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 28: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 29: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 30: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
Bit 31: Port x reset I/O pin y These bits are write-only. A read to these bits returns the value 0x0000. Note: If both BSx and BRx are set, BSx has priority..
GPIO port configuration lock register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCKK
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LCK15
rw |
LCK14
rw |
LCK13
rw |
LCK12
rw |
LCK11
rw |
LCK10
rw |
LCK9
rw |
LCK8
rw |
LCK7
rw |
LCK6
rw |
LCK5
rw |
LCK4
rw |
LCK3
rw |
LCK2
rw |
LCK1
rw |
LCK0
rw |
Bit 0: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 1: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 2: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 3: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 4: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 5: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 6: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 7: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 8: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 9: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 10: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 11: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 12: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 13: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 14: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 15: Port x lock I/O pin y These bits are read/write but can only be written when the LCKK bit is 0..
Bit 16: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. LOCK key write sequence: WR LCKR[16] = 1 + LCKR[15:0] WR LCKR[16] = 0 + LCKR[15:0] WR LCKR[16] = 1 + LCKR[15:0] RD LCKR RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Note: Any error in the lock sequence aborts the lock. Note: After the first lock sequence on any bit of the port, any read access on the LCKK bit returns 1 until the next MCU reset or peripheral reset..
GPIO alternate function low register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL7
rw |
AFSEL6
rw |
AFSEL5
rw |
AFSEL4
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL3
rw |
AFSEL2
rw |
AFSEL1
rw |
AFSEL0
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO alternate function high register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFSEL15
rw |
AFSEL14
rw |
AFSEL13
rw |
AFSEL12
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
AFSEL11
rw |
AFSEL10
rw |
AFSEL9
rw |
AFSEL8
rw |
Bits 0-3: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 4-7: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 8-11: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 12-15: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 16-19: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 20-23: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 24-27: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
Bits 28-31: Alternate function selection for port x I/O pin y These bits are written by software to configure alternate function I/Os..
GPIO port bit reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR15
w |
BR14
w |
BR13
w |
BR12
w |
BR11
w |
BR10
w |
BR9
w |
BR8
w |
BR7
w |
BR6
w |
BR5
w |
BR4
w |
BR3
w |
BR2
w |
BR1
w |
BR0
w |
Bit 0: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 1: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 2: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 3: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 4: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 5: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 6: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 7: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 8: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 9: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 10: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 11: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 12: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 13: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 14: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
Bit 15: Port x reset IO pin y These bits are write-only. A read to these bits returns the value 0x0000..
0x40005400: I2C address block description
14/68 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | I2C_CR1 | ||||||||||||||||||||||||||||||||
0x4 | I2C_CR2 | ||||||||||||||||||||||||||||||||
0x8 | I2C_OAR1 | ||||||||||||||||||||||||||||||||
0xc | I2C_OAR2 | ||||||||||||||||||||||||||||||||
0x10 | I2C_TIMINGR | ||||||||||||||||||||||||||||||||
0x14 | I2C_TIMEOUTR | ||||||||||||||||||||||||||||||||
0x18 | I2C_ISR | ||||||||||||||||||||||||||||||||
0x1c | I2C_ICR | ||||||||||||||||||||||||||||||||
0x20 | I2C_PECR | ||||||||||||||||||||||||||||||||
0x24 | I2C_RXDR | ||||||||||||||||||||||||||||||||
0x28 | I2C_TXDR |
I2C control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STOPFACLR
rw |
ADDRACLR
rw |
FMP
rw |
GCEN
rw |
WUPEN
rw |
NOSTRETCH
rw |
SBC
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RXDMAEN
rw |
TXDMAEN
rw |
ANFOFF
rw |
DNF
rw |
ERRIE
rw |
TCIE
rw |
STOPIE
rw |
NACKIE
rw |
ADDRIE
rw |
RXIE
rw |
TXIE
rw |
PE
rw |
Bit 0: Peripheral enable Note: When PE = 0, the I2C SCL and SDA lines are released. Internal state machines and status bits are put back to their reset value. When cleared, PE must be kept low for at least three APB clock cycles..
Bit 1: TX interrupt enable.
Bit 2: RX interrupt enable.
Bit 3: Address match interrupt enable (slave only).
Bit 4: Not acknowledge received interrupt enable.
Bit 5: Stop detection interrupt enable.
Bit 6: Transfer complete interrupt enable Note: Any of these events generate an interrupt: Note: Transfer complete (TC) Note: Transfer complete reload (TCR).
Bit 7: Error interrupts enable Note: Any of these errors generate an interrupt: Note: Arbitration loss (ARLO) Note: Bus error detection (BERR) Note: Overrun/Underrun (OVR).
Bits 8-11: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL input. The digital filter, filters spikes with a length of up to DNF[3:0] * t<sub>I2CCLK</sub> <sub>...</sub> Note: If the analog filter is enabled, the digital filter is added to it. This filter can be programmed only when the I2C is disabled (PE = 0)..
Bit 12: Analog noise filter OFF Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 14: DMA transmission requests enable.
Bit 15: DMA reception requests enable.
Bit 16: Slave byte control This bit is used to enable hardware byte control in slave mode..
Bit 17: Clock stretching disable This bit is used to disable clock stretching in slave mode. It must be kept cleared in master mode. Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 18: Wake-up from Stop mode enable.
Bit 19: General call enable.
Bit 24: Fast-mode Plus 20 mA drive enable.
Bit 30: Address match flag (ADDR) automatic clear.
Bit 31: STOP detection flag (STOPF) automatic clear.
I2C control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUTOEND
rw |
RELOAD
rw |
NBYTES
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
NACK
rw |
STOP
rw |
START
rw |
HEAD10R
rw |
ADD10
rw |
RD_WRN
rw |
SADD
rw |
Bits 0-9: Slave address (master mode) In 7-bit addressing mode (ADD10 = 0): SADD[7:1] must be written with the 7-bit slave address to be sent. Bits SADD[9], SADD[8] and SADD[0] are don't care. In 10-bit addressing mode (ADD10 = 1): SADD[9:0] must be written with the 10-bit slave address to be sent. Note: Changing these bits when the START bit is set is not allowed..
Bit 10: Transfer direction (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 11: 10-bit addressing mode (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 12: 10-bit address header only read direction (master receiver mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 13: Start generation This bit is set by software, and cleared by hardware after the Start followed by the address sequence is sent, by an arbitration loss, by an address matched in slave mode, by a timeout error detection, or when PE = 0. If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a Repeated start condition when RELOAD = 0, after the end of the NBYTES transfer. Otherwise, setting this bit generates a START condition once the bus is free. Note: Writing 0 to this bit has no effect. Note: The START bit can be set even if the bus is BUSY or I2C is in slave mode. Note: This bit has no effect when RELOAD is set..
Bit 14: Stop generation (master mode) The bit is set by software, cleared by hardware when a STOP condition is detected, or when PE = 0. In master mode: Note: Writing 0 to this bit has no effect..
Bit 15: NACK generation (slave mode) The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP condition or an Address matched is received, or when PE = 0. Note: Writing 0 to this bit has no effect. Note: This bit is used in slave mode only: in master receiver mode, NACK is automatically generated after last byte preceding STOP or RESTART condition, whatever the NACK bit value. Note: When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is automatically generated, whatever the NACK bit value. Note: When hardware PEC checking is enabled (PECBYTE = 1), the PEC acknowledge value does not depend on the NACK value..
Bits 16-23: Number of bytes.
Bit 24: NBYTES reload mode This bit is set and cleared by software..
Bit 25: Automatic end mode (master mode) This bit is set and cleared by software. Note: This bit has no effect in slave mode or when the RELOAD bit is set..
I2C own address 1 register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 0-9: Interface own slave address 7-bit addressing mode: OA1[7:1] contains the 7-bit own slave address. Bits OA1[9], OA1[8] and OA1[0] are don't care. 10-bit addressing mode: OA1[9:0] contains the 10-bit own slave address. Note: These bits can be written only when OA1EN = 0..
Bit 10: Own address 1 10-bit mode Note: This bit can be written only when OA1EN = 0..
Bit 15: Own address 1 enable.
I2C own address 2 register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 1-7: Interface address 7-bit addressing mode: 7-bit address Note: These bits can be written only when OA2EN = 0..
Bits 8-10: Own address 2 masks Note: These bits can be written only when OA2EN = 0. Note: As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and 0b1111xxx) are not acknowledged even if the comparison matches..
Bit 15: Own address 2 enable.
I2C timing register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESC
rw |
SCLDEL
rw |
SDADEL
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SCLH
rw |
SCLL
rw |
Bits 0-7: SCL low period (master mode) This field is used to generate the SCL low period in master mode. t<sub>SCLL </sub>= (SCLL + 1) x t<sub>PRESC</sub> Note: SCLL is also used to generate t<sub>BUF </sub>and t<sub>SU:STA </sub>timings..
Bits 8-15: SCL high period (master mode) This field is used to generate the SCL high period in master mode. t<sub>SCLH </sub>= (SCLH + 1) x t<sub>PRESC</sub> Note: SCLH is also used to generate t<sub>SU:STO </sub>and t<sub>HD:STA </sub>timing..
Bits 16-19: Data hold time This field is used to generate the delay t<sub>SDADEL </sub>between SCL falling edge and SDA edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SDADEL</sub>. t<sub>SDADEL</sub>= SDADEL x t<sub>PRESC</sub> Note: SDADEL is used to generate t<sub>HD:DAT </sub>timing..
Bits 20-23: Data setup time This field is used to generate a delay t<sub>SCLDEL </sub>between SDA edge and SCL rising edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SCLDEL</sub>. t<sub>SCLDEL </sub>= (SCLDEL + 1) x t<sub>PRESC</sub> Note: t<sub>SCLDEL</sub> is used to generate t<sub>SU:DAT </sub>timing..
Bits 28-31: Timing prescaler This field is used to prescale I2CCLK to generate the clock period t<sub>PRESC </sub>used for data setup and hold counters (refer to I2C timings) and for SCL high and low level counters (refer to I2C master initialization). t<sub>PRESC </sub>= (PRESC + 1) x t<sub>I2CCLK</sub>.
I2C timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEXTEN
rw |
TIMEOUTB
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TIMOUTEN
rw |
TIDLE
rw |
TIMEOUTA
rw |
Bits 0-11: Bus timeout A This field is used to configure: The SCL low timeout condition t<sub>TIMEOUT</sub> when TIDLE = 0 t<sub>TIMEOUT</sub>= (TIMEOUTA + 1) x 2048 x t<sub>I2CCLK</sub> The bus idle condition (both SCL and SDA high) when TIDLE = 1 t<sub>IDLE</sub>= (TIMEOUTA + 1) x 4 x t<sub>I2CCLK</sub> Note: These bits can be written only when TIMOUTEN = 0..
Bit 12: Idle clock timeout detection Note: This bit can be written only when TIMOUTEN = 0..
Bit 15: Clock timeout enable.
Bits 16-27: Bus timeout B This field is used to configure the cumulative clock extension timeout: In master mode, the master cumulative clock low extend time (t<sub>LOW:MEXT</sub>) is detected In slave mode, the slave cumulative clock low extend time (t<sub>LOW:SEXT</sub>) is detected t<sub>LOW:EXT </sub>= (TIMEOUTB + TIDLE = 01) x 2048 x t<sub>I2CCLK</sub> Note: These bits can be written only when TEXTEN = 0..
Bit 31: Extended clock timeout enable.
I2C interrupt and status register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
12/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADDCODE
r |
DIR
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BUSY
r |
OVR
r |
ARLO
r |
BERR
r |
TCR
r |
TC
r |
STOPF
r |
NACKF
r |
ADDR
r |
RXNE
r |
TXIS
rw |
TXE
rw |
Bit 0: Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE = 0..
Bit 1: Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software only when NOSTRETCH = 1, to generate a TXIS event (interrupt if TXIE = 1 or DMA request if TXDMAEN = 1). Note: This bit is cleared by hardware when PE = 0..
Bit 2: Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE = 0..
Bit 3: Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 4: Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 5: Stop detection flag This flag is set by hardware when a STOP condition is detected on the bus and the peripheral is involved in this transfer: either as a master, provided that the STOP condition is generated by the peripheral. or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 6: Transfer Complete (master mode) This flag is set by hardware when RELOAD = 0, AUTOEND = 0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE = 0..
Bit 7: Transfer Complete Reload This flag is set by hardware when RELOAD = 1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE = 0. Note: This flag is only for master mode, or for slave mode when the SBC bit is set..
Bit 8: Bus error This flag is set by hardware when a misplaced Start or STOP condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 9: Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 10: Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH = 1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 15: Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected, and cleared by hardware when a STOP condition is detected, or when PE = 0..
Bit 16: Transfer direction (slave mode) This flag is updated when an address match event occurs (ADDR = 1)..
Bits 17-23: Address match code (slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the two MSBs of the address..
I2C interrupt clear register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 3: Address matched flag clear Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also clears the START bit in the I2C_CR2 register..
Bit 4: Not Acknowledge flag clear Writing 1 to this bit clears the NACKF flag in I2C_ISR register..
Bit 5: STOP detection flag clear Writing 1 to this bit clears the STOPF flag in the I2C_ISR register..
Bit 8: Bus error flag clear Writing 1 to this bit clears the BERRF flag in the I2C_ISR register..
Bit 9: Arbitration lost flag clear Writing 1 to this bit clears the ARLO flag in the I2C_ISR register..
Bit 10: Overrun/Underrun flag clear Writing 1 to this bit clears the OVR flag in the I2C_ISR register..
I2C PEC register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PEC
r |
I2C receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXDATA
r |
I2C transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXDATA
rw |
0x40005800: I2C address block description
14/68 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | I2C_CR1 | ||||||||||||||||||||||||||||||||
0x4 | I2C_CR2 | ||||||||||||||||||||||||||||||||
0x8 | I2C_OAR1 | ||||||||||||||||||||||||||||||||
0xc | I2C_OAR2 | ||||||||||||||||||||||||||||||||
0x10 | I2C_TIMINGR | ||||||||||||||||||||||||||||||||
0x14 | I2C_TIMEOUTR | ||||||||||||||||||||||||||||||||
0x18 | I2C_ISR | ||||||||||||||||||||||||||||||||
0x1c | I2C_ICR | ||||||||||||||||||||||||||||||||
0x20 | I2C_PECR | ||||||||||||||||||||||||||||||||
0x24 | I2C_RXDR | ||||||||||||||||||||||||||||||||
0x28 | I2C_TXDR |
I2C control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STOPFACLR
rw |
ADDRACLR
rw |
FMP
rw |
GCEN
rw |
WUPEN
rw |
NOSTRETCH
rw |
SBC
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RXDMAEN
rw |
TXDMAEN
rw |
ANFOFF
rw |
DNF
rw |
ERRIE
rw |
TCIE
rw |
STOPIE
rw |
NACKIE
rw |
ADDRIE
rw |
RXIE
rw |
TXIE
rw |
PE
rw |
Bit 0: Peripheral enable Note: When PE = 0, the I2C SCL and SDA lines are released. Internal state machines and status bits are put back to their reset value. When cleared, PE must be kept low for at least three APB clock cycles..
Bit 1: TX interrupt enable.
Bit 2: RX interrupt enable.
Bit 3: Address match interrupt enable (slave only).
Bit 4: Not acknowledge received interrupt enable.
Bit 5: Stop detection interrupt enable.
Bit 6: Transfer complete interrupt enable Note: Any of these events generate an interrupt: Note: Transfer complete (TC) Note: Transfer complete reload (TCR).
Bit 7: Error interrupts enable Note: Any of these errors generate an interrupt: Note: Arbitration loss (ARLO) Note: Bus error detection (BERR) Note: Overrun/Underrun (OVR).
Bits 8-11: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL input. The digital filter, filters spikes with a length of up to DNF[3:0] * t<sub>I2CCLK</sub> <sub>...</sub> Note: If the analog filter is enabled, the digital filter is added to it. This filter can be programmed only when the I2C is disabled (PE = 0)..
Bit 12: Analog noise filter OFF Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 14: DMA transmission requests enable.
Bit 15: DMA reception requests enable.
Bit 16: Slave byte control This bit is used to enable hardware byte control in slave mode..
Bit 17: Clock stretching disable This bit is used to disable clock stretching in slave mode. It must be kept cleared in master mode. Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 18: Wake-up from Stop mode enable.
Bit 19: General call enable.
Bit 24: Fast-mode Plus 20 mA drive enable.
Bit 30: Address match flag (ADDR) automatic clear.
Bit 31: STOP detection flag (STOPF) automatic clear.
I2C control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUTOEND
rw |
RELOAD
rw |
NBYTES
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
NACK
rw |
STOP
rw |
START
rw |
HEAD10R
rw |
ADD10
rw |
RD_WRN
rw |
SADD
rw |
Bits 0-9: Slave address (master mode) In 7-bit addressing mode (ADD10 = 0): SADD[7:1] must be written with the 7-bit slave address to be sent. Bits SADD[9], SADD[8] and SADD[0] are don't care. In 10-bit addressing mode (ADD10 = 1): SADD[9:0] must be written with the 10-bit slave address to be sent. Note: Changing these bits when the START bit is set is not allowed..
Bit 10: Transfer direction (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 11: 10-bit addressing mode (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 12: 10-bit address header only read direction (master receiver mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 13: Start generation This bit is set by software, and cleared by hardware after the Start followed by the address sequence is sent, by an arbitration loss, by an address matched in slave mode, by a timeout error detection, or when PE = 0. If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a Repeated start condition when RELOAD = 0, after the end of the NBYTES transfer. Otherwise, setting this bit generates a START condition once the bus is free. Note: Writing 0 to this bit has no effect. Note: The START bit can be set even if the bus is BUSY or I2C is in slave mode. Note: This bit has no effect when RELOAD is set..
Bit 14: Stop generation (master mode) The bit is set by software, cleared by hardware when a STOP condition is detected, or when PE = 0. In master mode: Note: Writing 0 to this bit has no effect..
Bit 15: NACK generation (slave mode) The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP condition or an Address matched is received, or when PE = 0. Note: Writing 0 to this bit has no effect. Note: This bit is used in slave mode only: in master receiver mode, NACK is automatically generated after last byte preceding STOP or RESTART condition, whatever the NACK bit value. Note: When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is automatically generated, whatever the NACK bit value. Note: When hardware PEC checking is enabled (PECBYTE = 1), the PEC acknowledge value does not depend on the NACK value..
Bits 16-23: Number of bytes.
Bit 24: NBYTES reload mode This bit is set and cleared by software..
Bit 25: Automatic end mode (master mode) This bit is set and cleared by software. Note: This bit has no effect in slave mode or when the RELOAD bit is set..
I2C own address 1 register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 0-9: Interface own slave address 7-bit addressing mode: OA1[7:1] contains the 7-bit own slave address. Bits OA1[9], OA1[8] and OA1[0] are don't care. 10-bit addressing mode: OA1[9:0] contains the 10-bit own slave address. Note: These bits can be written only when OA1EN = 0..
Bit 10: Own address 1 10-bit mode Note: This bit can be written only when OA1EN = 0..
Bit 15: Own address 1 enable.
I2C own address 2 register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 1-7: Interface address 7-bit addressing mode: 7-bit address Note: These bits can be written only when OA2EN = 0..
Bits 8-10: Own address 2 masks Note: These bits can be written only when OA2EN = 0. Note: As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and 0b1111xxx) are not acknowledged even if the comparison matches..
Bit 15: Own address 2 enable.
I2C timing register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESC
rw |
SCLDEL
rw |
SDADEL
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SCLH
rw |
SCLL
rw |
Bits 0-7: SCL low period (master mode) This field is used to generate the SCL low period in master mode. t<sub>SCLL </sub>= (SCLL + 1) x t<sub>PRESC</sub> Note: SCLL is also used to generate t<sub>BUF </sub>and t<sub>SU:STA </sub>timings..
Bits 8-15: SCL high period (master mode) This field is used to generate the SCL high period in master mode. t<sub>SCLH </sub>= (SCLH + 1) x t<sub>PRESC</sub> Note: SCLH is also used to generate t<sub>SU:STO </sub>and t<sub>HD:STA </sub>timing..
Bits 16-19: Data hold time This field is used to generate the delay t<sub>SDADEL </sub>between SCL falling edge and SDA edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SDADEL</sub>. t<sub>SDADEL</sub>= SDADEL x t<sub>PRESC</sub> Note: SDADEL is used to generate t<sub>HD:DAT </sub>timing..
Bits 20-23: Data setup time This field is used to generate a delay t<sub>SCLDEL </sub>between SDA edge and SCL rising edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SCLDEL</sub>. t<sub>SCLDEL </sub>= (SCLDEL + 1) x t<sub>PRESC</sub> Note: t<sub>SCLDEL</sub> is used to generate t<sub>SU:DAT </sub>timing..
Bits 28-31: Timing prescaler This field is used to prescale I2CCLK to generate the clock period t<sub>PRESC </sub>used for data setup and hold counters (refer to I2C timings) and for SCL high and low level counters (refer to I2C master initialization). t<sub>PRESC </sub>= (PRESC + 1) x t<sub>I2CCLK</sub>.
I2C timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEXTEN
rw |
TIMEOUTB
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TIMOUTEN
rw |
TIDLE
rw |
TIMEOUTA
rw |
Bits 0-11: Bus timeout A This field is used to configure: The SCL low timeout condition t<sub>TIMEOUT</sub> when TIDLE = 0 t<sub>TIMEOUT</sub>= (TIMEOUTA + 1) x 2048 x t<sub>I2CCLK</sub> The bus idle condition (both SCL and SDA high) when TIDLE = 1 t<sub>IDLE</sub>= (TIMEOUTA + 1) x 4 x t<sub>I2CCLK</sub> Note: These bits can be written only when TIMOUTEN = 0..
Bit 12: Idle clock timeout detection Note: This bit can be written only when TIMOUTEN = 0..
Bit 15: Clock timeout enable.
Bits 16-27: Bus timeout B This field is used to configure the cumulative clock extension timeout: In master mode, the master cumulative clock low extend time (t<sub>LOW:MEXT</sub>) is detected In slave mode, the slave cumulative clock low extend time (t<sub>LOW:SEXT</sub>) is detected t<sub>LOW:EXT </sub>= (TIMEOUTB + TIDLE = 01) x 2048 x t<sub>I2CCLK</sub> Note: These bits can be written only when TEXTEN = 0..
Bit 31: Extended clock timeout enable.
I2C interrupt and status register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
12/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADDCODE
r |
DIR
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BUSY
r |
OVR
r |
ARLO
r |
BERR
r |
TCR
r |
TC
r |
STOPF
r |
NACKF
r |
ADDR
r |
RXNE
r |
TXIS
rw |
TXE
rw |
Bit 0: Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE = 0..
Bit 1: Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software only when NOSTRETCH = 1, to generate a TXIS event (interrupt if TXIE = 1 or DMA request if TXDMAEN = 1). Note: This bit is cleared by hardware when PE = 0..
Bit 2: Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE = 0..
Bit 3: Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 4: Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 5: Stop detection flag This flag is set by hardware when a STOP condition is detected on the bus and the peripheral is involved in this transfer: either as a master, provided that the STOP condition is generated by the peripheral. or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 6: Transfer Complete (master mode) This flag is set by hardware when RELOAD = 0, AUTOEND = 0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE = 0..
Bit 7: Transfer Complete Reload This flag is set by hardware when RELOAD = 1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE = 0. Note: This flag is only for master mode, or for slave mode when the SBC bit is set..
Bit 8: Bus error This flag is set by hardware when a misplaced Start or STOP condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 9: Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 10: Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH = 1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 15: Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected, and cleared by hardware when a STOP condition is detected, or when PE = 0..
Bit 16: Transfer direction (slave mode) This flag is updated when an address match event occurs (ADDR = 1)..
Bits 17-23: Address match code (slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the two MSBs of the address..
I2C interrupt clear register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 3: Address matched flag clear Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also clears the START bit in the I2C_CR2 register..
Bit 4: Not Acknowledge flag clear Writing 1 to this bit clears the NACKF flag in I2C_ISR register..
Bit 5: STOP detection flag clear Writing 1 to this bit clears the STOPF flag in the I2C_ISR register..
Bit 8: Bus error flag clear Writing 1 to this bit clears the BERRF flag in the I2C_ISR register..
Bit 9: Arbitration lost flag clear Writing 1 to this bit clears the ARLO flag in the I2C_ISR register..
Bit 10: Overrun/Underrun flag clear Writing 1 to this bit clears the OVR flag in the I2C_ISR register..
I2C PEC register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PEC
r |
I2C receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXDATA
r |
I2C transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXDATA
rw |
0x40008800: I2C address block description
14/68 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | I2C_CR1 | ||||||||||||||||||||||||||||||||
0x4 | I2C_CR2 | ||||||||||||||||||||||||||||||||
0x8 | I2C_OAR1 | ||||||||||||||||||||||||||||||||
0xc | I2C_OAR2 | ||||||||||||||||||||||||||||||||
0x10 | I2C_TIMINGR | ||||||||||||||||||||||||||||||||
0x14 | I2C_TIMEOUTR | ||||||||||||||||||||||||||||||||
0x18 | I2C_ISR | ||||||||||||||||||||||||||||||||
0x1c | I2C_ICR | ||||||||||||||||||||||||||||||||
0x20 | I2C_PECR | ||||||||||||||||||||||||||||||||
0x24 | I2C_RXDR | ||||||||||||||||||||||||||||||||
0x28 | I2C_TXDR |
I2C control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STOPFACLR
rw |
ADDRACLR
rw |
FMP
rw |
GCEN
rw |
WUPEN
rw |
NOSTRETCH
rw |
SBC
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RXDMAEN
rw |
TXDMAEN
rw |
ANFOFF
rw |
DNF
rw |
ERRIE
rw |
TCIE
rw |
STOPIE
rw |
NACKIE
rw |
ADDRIE
rw |
RXIE
rw |
TXIE
rw |
PE
rw |
Bit 0: Peripheral enable Note: When PE = 0, the I2C SCL and SDA lines are released. Internal state machines and status bits are put back to their reset value. When cleared, PE must be kept low for at least three APB clock cycles..
Bit 1: TX interrupt enable.
Bit 2: RX interrupt enable.
Bit 3: Address match interrupt enable (slave only).
Bit 4: Not acknowledge received interrupt enable.
Bit 5: Stop detection interrupt enable.
Bit 6: Transfer complete interrupt enable Note: Any of these events generate an interrupt: Note: Transfer complete (TC) Note: Transfer complete reload (TCR).
Bit 7: Error interrupts enable Note: Any of these errors generate an interrupt: Note: Arbitration loss (ARLO) Note: Bus error detection (BERR) Note: Overrun/Underrun (OVR).
Bits 8-11: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL input. The digital filter, filters spikes with a length of up to DNF[3:0] * t<sub>I2CCLK</sub> <sub>...</sub> Note: If the analog filter is enabled, the digital filter is added to it. This filter can be programmed only when the I2C is disabled (PE = 0)..
Bit 12: Analog noise filter OFF Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 14: DMA transmission requests enable.
Bit 15: DMA reception requests enable.
Bit 16: Slave byte control This bit is used to enable hardware byte control in slave mode..
Bit 17: Clock stretching disable This bit is used to disable clock stretching in slave mode. It must be kept cleared in master mode. Note: This bit can be programmed only when the I2C is disabled (PE = 0)..
Bit 18: Wake-up from Stop mode enable.
Bit 19: General call enable.
Bit 24: Fast-mode Plus 20 mA drive enable.
Bit 30: Address match flag (ADDR) automatic clear.
Bit 31: STOP detection flag (STOPF) automatic clear.
I2C control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUTOEND
rw |
RELOAD
rw |
NBYTES
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
NACK
rw |
STOP
rw |
START
rw |
HEAD10R
rw |
ADD10
rw |
RD_WRN
rw |
SADD
rw |
Bits 0-9: Slave address (master mode) In 7-bit addressing mode (ADD10 = 0): SADD[7:1] must be written with the 7-bit slave address to be sent. Bits SADD[9], SADD[8] and SADD[0] are don't care. In 10-bit addressing mode (ADD10 = 1): SADD[9:0] must be written with the 10-bit slave address to be sent. Note: Changing these bits when the START bit is set is not allowed..
Bit 10: Transfer direction (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 11: 10-bit addressing mode (master mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 12: 10-bit address header only read direction (master receiver mode) Note: Changing this bit when the START bit is set is not allowed..
Bit 13: Start generation This bit is set by software, and cleared by hardware after the Start followed by the address sequence is sent, by an arbitration loss, by an address matched in slave mode, by a timeout error detection, or when PE = 0. If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a Repeated start condition when RELOAD = 0, after the end of the NBYTES transfer. Otherwise, setting this bit generates a START condition once the bus is free. Note: Writing 0 to this bit has no effect. Note: The START bit can be set even if the bus is BUSY or I2C is in slave mode. Note: This bit has no effect when RELOAD is set..
Bit 14: Stop generation (master mode) The bit is set by software, cleared by hardware when a STOP condition is detected, or when PE = 0. In master mode: Note: Writing 0 to this bit has no effect..
Bit 15: NACK generation (slave mode) The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP condition or an Address matched is received, or when PE = 0. Note: Writing 0 to this bit has no effect. Note: This bit is used in slave mode only: in master receiver mode, NACK is automatically generated after last byte preceding STOP or RESTART condition, whatever the NACK bit value. Note: When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is automatically generated, whatever the NACK bit value. Note: When hardware PEC checking is enabled (PECBYTE = 1), the PEC acknowledge value does not depend on the NACK value..
Bits 16-23: Number of bytes.
Bit 24: NBYTES reload mode This bit is set and cleared by software..
Bit 25: Automatic end mode (master mode) This bit is set and cleared by software. Note: This bit has no effect in slave mode or when the RELOAD bit is set..
I2C own address 1 register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 0-9: Interface own slave address 7-bit addressing mode: OA1[7:1] contains the 7-bit own slave address. Bits OA1[9], OA1[8] and OA1[0] are don't care. 10-bit addressing mode: OA1[9:0] contains the 10-bit own slave address. Note: These bits can be written only when OA1EN = 0..
Bit 10: Own address 1 10-bit mode Note: This bit can be written only when OA1EN = 0..
Bit 15: Own address 1 enable.
I2C own address 2 register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 1-7: Interface address 7-bit addressing mode: 7-bit address Note: These bits can be written only when OA2EN = 0..
Bits 8-10: Own address 2 masks Note: These bits can be written only when OA2EN = 0. Note: As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and 0b1111xxx) are not acknowledged even if the comparison matches..
Bit 15: Own address 2 enable.
I2C timing register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESC
rw |
SCLDEL
rw |
SDADEL
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SCLH
rw |
SCLL
rw |
Bits 0-7: SCL low period (master mode) This field is used to generate the SCL low period in master mode. t<sub>SCLL </sub>= (SCLL + 1) x t<sub>PRESC</sub> Note: SCLL is also used to generate t<sub>BUF </sub>and t<sub>SU:STA </sub>timings..
Bits 8-15: SCL high period (master mode) This field is used to generate the SCL high period in master mode. t<sub>SCLH </sub>= (SCLH + 1) x t<sub>PRESC</sub> Note: SCLH is also used to generate t<sub>SU:STO </sub>and t<sub>HD:STA </sub>timing..
Bits 16-19: Data hold time This field is used to generate the delay t<sub>SDADEL </sub>between SCL falling edge and SDA edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SDADEL</sub>. t<sub>SDADEL</sub>= SDADEL x t<sub>PRESC</sub> Note: SDADEL is used to generate t<sub>HD:DAT </sub>timing..
Bits 20-23: Data setup time This field is used to generate a delay t<sub>SCLDEL </sub>between SDA edge and SCL rising edge. In master and in slave modes with NOSTRETCH = 0, the SCL line is stretched low during t<sub>SCLDEL</sub>. t<sub>SCLDEL </sub>= (SCLDEL + 1) x t<sub>PRESC</sub> Note: t<sub>SCLDEL</sub> is used to generate t<sub>SU:DAT </sub>timing..
Bits 28-31: Timing prescaler This field is used to prescale I2CCLK to generate the clock period t<sub>PRESC </sub>used for data setup and hold counters (refer to I2C timings) and for SCL high and low level counters (refer to I2C master initialization). t<sub>PRESC </sub>= (PRESC + 1) x t<sub>I2CCLK</sub>.
I2C timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEXTEN
rw |
TIMEOUTB
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TIMOUTEN
rw |
TIDLE
rw |
TIMEOUTA
rw |
Bits 0-11: Bus timeout A This field is used to configure: The SCL low timeout condition t<sub>TIMEOUT</sub> when TIDLE = 0 t<sub>TIMEOUT</sub>= (TIMEOUTA + 1) x 2048 x t<sub>I2CCLK</sub> The bus idle condition (both SCL and SDA high) when TIDLE = 1 t<sub>IDLE</sub>= (TIMEOUTA + 1) x 4 x t<sub>I2CCLK</sub> Note: These bits can be written only when TIMOUTEN = 0..
Bit 12: Idle clock timeout detection Note: This bit can be written only when TIMOUTEN = 0..
Bit 15: Clock timeout enable.
Bits 16-27: Bus timeout B This field is used to configure the cumulative clock extension timeout: In master mode, the master cumulative clock low extend time (t<sub>LOW:MEXT</sub>) is detected In slave mode, the slave cumulative clock low extend time (t<sub>LOW:SEXT</sub>) is detected t<sub>LOW:EXT </sub>= (TIMEOUTB + TIDLE = 01) x 2048 x t<sub>I2CCLK</sub> Note: These bits can be written only when TEXTEN = 0..
Bit 31: Extended clock timeout enable.
I2C interrupt and status register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
12/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADDCODE
r |
DIR
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BUSY
r |
OVR
r |
ARLO
r |
BERR
r |
TCR
r |
TC
r |
STOPF
r |
NACKF
r |
ADDR
r |
RXNE
r |
TXIS
rw |
TXE
rw |
Bit 0: Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE = 0..
Bit 1: Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software only when NOSTRETCH = 1, to generate a TXIS event (interrupt if TXIE = 1 or DMA request if TXDMAEN = 1). Note: This bit is cleared by hardware when PE = 0..
Bit 2: Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE = 0..
Bit 3: Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 4: Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 5: Stop detection flag This flag is set by hardware when a STOP condition is detected on the bus and the peripheral is involved in this transfer: either as a master, provided that the STOP condition is generated by the peripheral. or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 6: Transfer Complete (master mode) This flag is set by hardware when RELOAD = 0, AUTOEND = 0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE = 0..
Bit 7: Transfer Complete Reload This flag is set by hardware when RELOAD = 1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE = 0. Note: This flag is only for master mode, or for slave mode when the SBC bit is set..
Bit 8: Bus error This flag is set by hardware when a misplaced Start or STOP condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 9: Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 10: Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH = 1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE = 0..
Bit 15: Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected, and cleared by hardware when a STOP condition is detected, or when PE = 0..
Bit 16: Transfer direction (slave mode) This flag is updated when an address match event occurs (ADDR = 1)..
Bits 17-23: Address match code (slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the two MSBs of the address..
I2C interrupt clear register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 3: Address matched flag clear Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also clears the START bit in the I2C_CR2 register..
Bit 4: Not Acknowledge flag clear Writing 1 to this bit clears the NACKF flag in I2C_ISR register..
Bit 5: STOP detection flag clear Writing 1 to this bit clears the STOPF flag in the I2C_ISR register..
Bit 8: Bus error flag clear Writing 1 to this bit clears the BERRF flag in the I2C_ISR register..
Bit 9: Arbitration lost flag clear Writing 1 to this bit clears the ARLO flag in the I2C_ISR register..
Bit 10: Overrun/Underrun flag clear Writing 1 to this bit clears the OVR flag in the I2C_ISR register..
I2C PEC register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PEC
r |
I2C receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXDATA
r |
I2C transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXDATA
rw |
0x40003000: IWDG address block description
6/13 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | IWDG_KR | ||||||||||||||||||||||||||||||||
0x4 | IWDG_PR | ||||||||||||||||||||||||||||||||
0x8 | IWDG_RLR | ||||||||||||||||||||||||||||||||
0xc | IWDG_SR | ||||||||||||||||||||||||||||||||
0x10 | IWDG_WINR | ||||||||||||||||||||||||||||||||
0x14 | IWDG_EWCR |
IWDG key register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KEY
w |
Bits 0-15: Key value (write only, read 0x0000) These bits can be used for several functions, depending upon the value written by the application: - 0xAAAA: reloads the RL[11:0] value into the IWDCNT down-counter (watchdog refresh), and write-protects registers. This value must be written by software at regular intervals, otherwise the watchdog generates a reset when the counter reaches 0. - 0x5555: enables write-accesses to the registers. - 0xCCCC: enables the watchdog (except if the hardware watchdog option is selected) and write-protects registers. - values different from 0x5555: write-protects registers. Note that only IWDG_PR, IWDG_RLR, IWDG_EWCR and IWDG_WINR registers have a write-protection mechanism..
IWDG prescaler register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PR
rw |
Bits 0-3: Prescaler divider These bits are write access protected, see Section126.4.6. They are written by software to select the prescaler divider feeding the counter clock. PVU bit of the IWDG status register (IWDG_SR) must be reset to be able to change the prescaler divider. Others: divider / 1024 Note: Reading this register returns the prescaler value from the V<sub>DD</sub> voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the PVU bit in the IWDG status register (IWDG_SR) is reset..
IWDG reload register
Offset: 0x8, size: 32, reset: 0x00000FFF, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RL
rw |
Bits 0-11: Watchdog counter reload value These bits are write access protected, see Section126.4.6. They are written by software to define the value to be loaded in the watchdog counter each time the value 0xAAAA is written in the IWDG key register (IWDG_KR). The watchdog counter counts down from this value. The timeout period is a function of this value and the prescaler.clock. It is not recommended to set RL[11:0] to a value lower than 2. The RVU bit in the IWDG status register (IWDG_SR) must be reset to be able to change the reload value. Note: Reading this register returns the reload value from the V<sub>DD</sub> voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing, hence the value read from this register is valid only when the RVU bit in the IWDG status register (IWDG_SR) is reset..
IWDG status register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
6/6 fields covered.
Bit 0: Watchdog prescaler value update This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is reset by hardware when the prescaler update operation is completed in the V<sub>DD</sub> voltage domain (takes up to six periods of the IWDG kernel clock iwdg_ker_ck). The prescaler value can be updated only when PVU bit is reset..
Bit 1: Watchdog counter reload value update This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset by hardware when the reload value update operation is completed in the V<sub>DD</sub> voltage domain (takes up to six periods of the IWDG kernel clock iwdg_ker_ck). The reload value can be updated only when RVU bit is reset..
Bit 2: Watchdog counter window value update This bit is set by hardware to indicate that an update of the window value is ongoing. It is reset by hardware when the reload value update operation is completed in the V<sub>DD</sub> voltage domain (takes up to one period of presc_ck and two periods of the IWDG kernel clock iwdg_ker_ck). The window value can be updated only when WVU bit is reset. This bit is generated only if generic window = 1..
Bit 3: Watchdog interrupt comparator value update This bit is set by hardware to indicate that an update of the interrupt comparator value (EWIT[11:0]) or an update of the EWIE is ongoing. It is reset by hardware when the update operation is completed in the V<sub>DD</sub> voltage domain (takes up to one period of presc_ck and two periods of the IWDG kernel clock iwdg_ker_ck). The EWIT[11:0] and EWIE fields can be updated only when EWU bit is reset..
Bit 8: Watchdog enable status bit Set to 1 by hardware as soon as the IWDG is started. In software mode, it remains to '1' until the IWDG is reset. In hardware mode, this bit is always set to '1'..
Bit 14: Watchdog early interrupt flag This bit is set to 1 by hardware in order to indicate that an early interrupt is pending. This bit must be cleared by the software by writing the bit EWIC of IWDG_EWCR register to 1..
IWDG window register
Offset: 0x10, size: 32, reset: 0x00000FFF, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WIN
rw |
Bits 0-11: Watchdog counter window value These bits are write access protected, see Section126.4.6.They contain the high limit of the window value to be compared with the downcounter. To prevent a reset, the IWDCNT downcounter must be reloaded when its value is lower than WIN[11:0]1+11 and greater than 1. The WVU bit in the IWDG status register (IWDG_SR) must be reset to be able to change the reload value. Note: Reading this register returns the reload value from the V<sub>DD</sub> voltage domain. This value may not be valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the WVU bit in the IWDG status register (IWDG_SR) is reset..
IWDG early wake-up interrupt register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
Bits 0-11: Watchdog counter window value These bits are write access protected (see Section126.4.6). They are written by software to define at which position of the IWDCNT down-counter the early wake-up interrupt must be generated. The early interrupt is generated when the IWDCNT is lower or equal to EWIT[11:0]1-11. EWIT[11:0] must be bigger than 1. An interrupt is generated only if EWIE = 1. The EWU bit in the IWDG status register (IWDG_SR) must be reset to be able to change the reload value. Note: Reading this register returns the Early wake-up comparator value and the Interrupt enable bit from the V<sub>DD</sub> voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing, hence the value read from this register is valid only when the EWU bit in the IWDG status register (IWDG_SR) is reset..
Bit 14: Watchdog early interrupt acknowledge The software must write a 1 into this bit in order to acknowledge the early wake-up interrupt and to clear the EWIF flag. Writing 0 has not effect, reading this flag returns a 0..
Bit 15: Watchdog early interrupt enable Set and reset by software. The EWU bit in the IWDG status register (IWDG_SR) must be reset to be able to change the value of this bit..
0x40002400: LCD address block description
5/32 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | CR | ||||||||||||||||||||||||||||||||
0x4 | FCR | ||||||||||||||||||||||||||||||||
0x8 | SR | ||||||||||||||||||||||||||||||||
0xc | CLR | ||||||||||||||||||||||||||||||||
0x14 (64-bit) | RAM_COM0 | ||||||||||||||||||||||||||||||||
0x1c (64-bit) | RAM_COM1 | ||||||||||||||||||||||||||||||||
0x24 (64-bit) | RAM_COM2 | ||||||||||||||||||||||||||||||||
0x2c (64-bit) | RAM_COM3 | ||||||||||||||||||||||||||||||||
0x34 (64-bit) | RAM_COM4 | ||||||||||||||||||||||||||||||||
0x3c (64-bit) | RAM_COM5 | ||||||||||||||||||||||||||||||||
0x44 (64-bit) | RAM_COM6 | ||||||||||||||||||||||||||||||||
0x4c (64-bit) | RAM_COM7 |
LCD control register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 0: LCD controller enable This bit is set by software to enable the LCD controller/driver. It is cleared by software to turn off the LCD at the beginning of the next frame. When the LCD is disabled, all COM and SEG pins are driven to V<sub>SS</sub>..
Bit 1: Voltage source selection This bit determines the voltage source for the LCD..
Bits 2-4: Duty selection These bits determine the duty cycle. Values 101, 110 and 111 are forbidden. Others: Reserved.
Bits 5-6: Bias selector These bits determine the bias used. Value 11 is forbidden..
Bit 7: Mux segment enable This bit is used to enable SEG pin remapping. Four SEG pins can be multiplexed with1SEG[31:28] or SEG[15:12]. See Section118.3.7..
Bit 8: Voltage output buffer enable This bit is used to enable/disable the voltage output buffer for higher driving capability..
LCD frame control register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS
rw |
DIV
rw |
BLINK
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BLINKF
rw |
CC
rw |
DEAD
rw |
PON
rw |
UDDIE
rw |
SOFIE
rw |
HD
rw |
Bit 0: High drive enable This bit is written by software to enable a low resistance divider. Displays with high internal resistance may need a longer drive time to achieve satisfactory contrast. This bit is useful in this case if some additional power consumption can be tolerated..
Bit 1: Start of frame interrupt enable This bit is set and cleared by software..
Bit 3: Update display done interrupt enable This bit is set and cleared by software..
Bits 4-6: Pulse ON duration These bits are written by software to define the pulse duration in terms of ck_ps pulses. A1short pulse leads to lower power consumption, but displays with high internal resistance may need a longer pulse to achieve satisfactory contrast. Note that the pulse is never longer than one half prescaled LCD clock period. PON duration example with LCDCLK = 32.7681kHz and PS=0x03:.
Bits 7-9: Dead time duration These bits are written by software to configure the length of the dead time between frames. During the dead time the COM and SEG voltage levels are held at 0 V to reduce the contrast without modifying the frame rate. .......
Bits 10-12: Contrast control These bits specify one of the V<sub>LCD </sub>maximum voltages (independent of V<sub>DD</sub>). It ranges from12.60 V to 3.51V. Note: Refer to the datasheet for the V<sub>LCDx</sub> values..
Bits 13-15: Blink frequency selection.
Bits 16-17: Blink mode selection.
Bits 18-21: DIV clock divider These bits are written by software to define the division factor of the DIV divider (see1Section118.3.2.) ....
Bits 22-25: PS 16-bit prescaler These bits are written by software to define the division factor of the PS 16-bit prescaler. ck_ps = LCDCLK/(2<sup>PS[3:0]</sup>). See<sub> </sub>Section118.3.2. ....
LCD status register
Offset: 0x8, size: 32, reset: 0x00000020, access: Unspecified
5/6 fields covered.
Bit 0: LCD enabled status This bit is set and cleared by hardware. It indicates the LCD controller status. Note: This bit is set immediately when LCDEN in LCD_CR goes from 0 to 1. On deactivation, it reflects the real LCD status. It becomes 0 at the end of the last displayed frame..
Bit 1: Start-of-frame flag This bit is set by hardware at the beginning of a new frame, at the same time as the display data is updated. It is cleared by writing a 1 to SOFC in LCD_CLR. The bit clear has priority over the set..
Bit 2: Update display request Each time software modifies the LCD_RAM, it must set this bit to transfer the updated data to the second level buffer. This bit stays set until the end of the update. During this time, the LCD_RAM is write protected. When the display is disabled, the update is performed for all LCD_DISPLAY locations. When the display is enabled, the update is performed only for locations for which commons are active (depending on DUTY). For example if DUTY = 1/2, Note: only the LCD_DISPLAY of COM0 and COM1 are updated. Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be cleared by hardware only. It can be cleared only when LCDEN = 1.
Bit 3: Update display done This bit is set by hardware. It is cleared by writing 1 to UDDC in LCD_CLR. The bit set has priority over the clear. Note: If the device is in Stop mode (PCLK not provided), UDD does not generate an interrupt even if UDDIE = 1. If the display is not enabled, the UDD interrupt never occurs..
Bit 4: Ready flag This bit is set and cleared by hardware. It indicates the status of the stepup converter..
Bit 5: LCD frame control register synchronization flag This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK domain. It is cleared by hardware when writing to the LCD_FCR register..
LCD clear register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
LCD display memory
Offset: 0x14, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
LCD display memory
Offset: 0x1c, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
LCD display memory
Offset: 0x24, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
LCD display memory
Offset: 0x2c, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
LCD display memory
Offset: 0x34, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
LCD display memory
Offset: 0x3c, size: 64, reset: 0x00000000, access: read-write
0/1 fields covered.
0x40007c00: LPTIM1 address block description
33/148 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPTIM1_ISR_INPUT | ||||||||||||||||||||||||||||||||
0x0 | LPTIM1_ISR_OUTPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM1_ICR_INPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM1_ICR_OUTPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM1_DIER_INPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM1_DIER_OUTPUT | ||||||||||||||||||||||||||||||||
0xc | LPTIM1_CFGR | ||||||||||||||||||||||||||||||||
0x10 | LPTIM1_CR | ||||||||||||||||||||||||||||||||
0x14 | LPTIM1_CCR1 | ||||||||||||||||||||||||||||||||
0x18 | LPTIM1_ARR | ||||||||||||||||||||||||||||||||
0x1c | LPTIM1_CNT | ||||||||||||||||||||||||||||||||
0x24 | LPTIM1_CFGR2 | ||||||||||||||||||||||||||||||||
0x28 | LPTIM1_RCR | ||||||||||||||||||||||||||||||||
0x2c | LPTIM1_CCMR1 | ||||||||||||||||||||||||||||||||
0x30 | LPTIM1_CCMR2 | ||||||||||||||||||||||||||||||||
0x34 | LPTIM1_CCR2 | ||||||||||||||||||||||||||||||||
0x38 | LPTIM1_CCR3 | ||||||||||||||||||||||||||||||||
0x3c | LPTIM1_CCR4 |
LPTIM1 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OF
r |
CC3OF
r |
CC2OF
r |
CC1OF
r |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: capture 1 interrupt flag If channel CC1 is configured as input: CC1IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR1 register. The corresponding interrupt or DMA request is generated if enabled. The CC1OF flag is set if the CC1IF flag was already high..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Capture 2 interrupt flag If channel CC2 is configured as input: CC2IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR2 register. The corresponding interrupt or DMA request is generated if enabled. The CC2OF flag is set if the CC2IF flag was already high. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture 3 interrupt flag If channel CC3 is configured as input: CC3IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR3 register. The corresponding interrupt or DMA request is generated if enabled. The CC3OF flag is set if the CC3IF flag was already high. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture 4 interrupt flag If channel CC4 is configured as input: CC4IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR4 register. The corresponding interrupt or DMA request is generated if enabled. The CC4OF flag is set if the CC4IF flag was already high. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture 1 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC1OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture 2 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC2OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture 3 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC3OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture 4 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC4OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM1 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
CMP4OK
r |
CMP3OK
r |
CMP2OK
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
CMP1OK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: Compare 1 interrupt flag If channel CC1 is configured as output: The CC1IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC1IF flag can be cleared by writing 1 to the CC1CF bit in the LPTIM_ICR register..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 3: Compare register 1 update OK CMP1OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR1 register has been successfully completed. CMP1OK flag can be cleared by writing 1 to the CMP1OKCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. The corresponding interrupt or DMA request is generated if enabled. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register. The UE flag is automatically cleared by hardware once the LPTIM_ARR register is written by any bus master like CPU or DMA..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Compare 2 interrupt flag If channel CC2 is configured as output: The CC2IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC2IF flag can be cleared by writing 1 to the CC2CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Compare 3 interrupt flag If channel CC3 is configured as output: The CC3IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC3IF flag can be cleared by writing 1 to the CC3CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Compare 4 interrupt flag If channel CC4 is configured as output: The CC4IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC4IF flag can be cleared by writing 1 to the CC4CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK CMP2OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR2 register has been successfully completed. CMP2OK flag can be cleared by writing 1 to the CMP2OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK CMP3OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR3 register has been successfully completed. CMP3OK flag can be cleared by writing 1 to the CMP3OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK CMP4OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR4 register has been successfully completed. CMP4OK flag can be cleared by writing 1 to the CMP4OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM1 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OCF
w |
CC3OCF
w |
CC2OCF
w |
CC1OCF
w |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture clear flag Writing 1 to this bit clears the CC1OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture clear flag Writing 1 to this bit clears the CC2OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture clear flag Writing 1 to this bit clears the CC3OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture clear flag Writing 1 to this bit clears the CC4OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM1 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
CMP4OKCF
w |
CMP3OKCF
w |
CMP2OKCF
w |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
CMP1OKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 3: Compare register 1 update OK clear flag Writing 1 to this bit clears the CMP1OK flag in the LPTIM_ISR register..
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK clear flag Writing 1 to this bit clears the CMP2OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK clear flag Writing 1 to this bit clears the CMP3OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK clear flag Writing 1 to this bit clears the CMP4OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM1 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
UEDE
rw |
CC1DE
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OIE
rw |
CC3OIE
rw |
CC2OIE
rw |
CC1OIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture interrupt enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 16: Capture/compare 1 DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 25: Capture/compare 2 DMA request enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 26: Capture/compare 3 DMA request enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 27: Capture/compare 4 DMA request enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
LPTIM1 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UEDE
rw |
CMP4OKIE
rw |
CMP3OKIE
rw |
CMP2OKIE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
CMP1OKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 3: Compare register 1 update OK interrupt enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
LPTIM configuration register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENC
rw |
COUNTMODE
rw |
PRELOAD
rw |
WAVE
rw |
TIMOUT
rw |
TRIGEN
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TRIGSEL
rw |
PRESC
rw |
TRGFLT
rw |
CKFLT
rw |
CKPOL
rw |
CKSEL
rw |
Bit 0: Clock selector The CKSEL bit selects which clock source the LPTIM uses:.
Bits 1-2: Clock Polarity When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active edge or edges used by the counter: If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 1 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 2 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 3 is active. Refer to Section125.4.15: Encoder mode for more details about Encoder mode sub-modes..
Bits 3-4: Configurable digital filter for external clock The CKFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an external clock signal before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 6-7: Configurable digital filter for trigger The TRGFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an internal trigger before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 9-11: Clock prescaler The PRESC bits configure the prescaler division factor. It can be one among the following division factors:.
Bits 13-15: Trigger selector The TRIGSEL bits select the trigger source that serves as a trigger event for the LPTIM among the below 8 available sources: See Section125.4.3: LPTIM input and trigger mapping for details..
Bits 17-18: Trigger enable and polarity The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the external trigger option is selected, three configurations are possible for the trigger active edge:.
Bit 19: Timeout enable The TIMOUT bit controls the Timeout feature.
Bit 20: Waveform shape The WAVE bit controls the output shape.
Bit 22: Registers update mode The PRELOAD bit controls the LPTIM1_ARR, LPTIM1_RCR and the LPTIM1_CCRx registers update modality.
Bit 23: counter mode enabled The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:.
Bit 24: Encoder mode enable The ENC bit controls the Encoder mode Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
LPTIM control register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: LPTIM enable The ENABLE bit is set and cleared by software..
Bit 1: LPTIM start in Single mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in single pulse mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the LPTIM in single pulse mode as soon as an external trigger is detected. If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM stops at the following match between LPTIM1_ARR and LPTIM1_CNT registers. This bit can only be set when the LPTIM is enabled. It is automatically reset by hardware..
Bit 2: Timer start in Continuous mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in Continuous mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the timer in Continuous mode as soon as an external trigger is detected. If this bit is set when a single pulse mode counting is ongoing, then the timer does not stop at the next match between the LPTIM1_ARR and LPTIM1_CNT registers and the LPTIM counter keeps counting in Continuous mode. This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware..
Bit 3: Counter reset This bit is set by software and cleared by hardware. When set to '1' this bit triggers a synchronous reset of the LPTIM1_CNT counter register. Due to the synchronous nature of this reset, it only takes place after a synchronization delay of 3 LPTimer core clock cycles (LPTimer core clock may be different from APB clock). This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware. COUNTRST must never be set to '1' by software before it is already cleared to '0' by hardware. Software must consequently check that COUNTRST bit is already cleared to '0' before attempting to set it to '1'..
Bit 4: Reset after read enable This bit is set and cleared by software. When RSTARE is set to '1', any read access to LPTIM1_CNT register asynchronously resets LPTIM1_CNT register content. This bit can be set only when the LPTIM is enabled..
LPTIM compare register 1
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
Bits 0-15: Capture/compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the capture/compare 1 register. Depending on the PRELOAD option, the CCR1 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 1 contains the value to be compared to the counter LPTIM1_CNT and signaled on OC1 output. If channel CC1 is configured as input: CCR1 becomes read-only, it contains the counter value transferred by the last input capture 1 event. The LPTIM1_CCR1 register is read-only and cannot be programmed..
LPTIM autoreload register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
LPTIM counter register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
LPTIM configuration register 2
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2SEL
rw |
IC1SEL
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IN2SEL
rw |
IN1SEL
rw |
Bits 0-1: LPTIM input 1 selection The IN1SEL bits control the LPTIM input 1 multiplexer, which connects LPTIM input 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 4-5: LPTIM input 2 selection The IN2SEL bits control the LPTIM input 2 multiplexer, which connects LPTIM input 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 16-17: LPTIM input capture 1 selection The IC1SEL bits control the LPTIM Input capture 1 multiplexer, which connects LPTIM Input capture 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 20-21: LPTIM input capture 2 selection The IC2SEL bits control the LPTIM Input capture 2 multiplexer, which connects LPTIM Input capture 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
LPTIM repetition register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
LPTIM capture/compare mode register 1
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2F
rw |
IC2PSC
rw |
CC2P
rw |
CC2E
rw |
CC2SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC1F
rw |
IC1PSC
rw |
CC1P
rw |
CC1E
rw |
CC1SEL
rw |
Bit 0: Capture/compare 1 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 1 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (LPTIM1_CCR1) or not..
Bits 2-3: Capture/compare 1 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC1 polarity for capture operations..
Bits 8-9: Input capture 1 prescaler This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1)..
Bits 12-13: Input capture 1 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 2 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 2 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 2 (LPTIM1_CCR2) or not..
Bits 18-19: Capture/compare 2 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC2 polarity for capture operations..
Bits 24-25: Input capture 2 prescaler This bitfield defines the ratio of the prescaler acting on the CC2 input (IC2)..
Bits 28-29: Input capture 2 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM capture/compare mode register 2
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC4F
rw |
IC4PSC
rw |
CC4P
rw |
CC4E
rw |
CC4SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC3F
rw |
IC3PSC
rw |
CC3P
rw |
CC3E
rw |
CC3SEL
rw |
Bit 0: Capture/compare 3 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 3 output enable. Condition: CC3 as output: Condition: CC3 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 3 (LPTIM1_CCR3) or not..
Bits 2-3: Capture/compare 3 output polarity. Condition: CC3 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC3 as input: This field is used to select the IC3 polarity for capture operations..
Bits 8-9: Input capture 3 prescaler This bitfield defines the ratio of the prescaler acting on the CC3 input (IC3)..
Bits 12-13: Input capture 3 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 4 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 4 output enable. Condition: CC4 as output: Condition: CC4 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 4 (LPTIM1_CCR4) or not..
Bits 18-19: Capture/compare 4 output polarity. Condition: CC4 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC4 as input: This field is used to select the IC4 polarity for capture operations..
Bits 24-25: Input capture 4 prescaler This bitfield defines the ratio of the prescaler acting on the CC4 input (IC4)..
Bits 28-29: Input capture 4 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM compare register 2
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR2
rw |
Bits 0-15: Capture/compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the capture/compare 2 register. Depending on the PRELOAD option, the CCR2 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 2 contains the value to be compared to the counter LPTIM1_CNT and signaled on OC2 output. If channel CC2 is configured as input: CCR2 becomes read-only, it contains the counter value transferred by the last input capture 2 event. The LPTIM1_CCR2 register is read-only and cannot be programmed..
LPTIM compare register 3
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR3
rw |
Bits 0-15: Capture/compare 3 value If channel CC3 is configured as output: CCR3 is the value to be loaded in the capture/compare 3 register. Depending on the PRELOAD option, the CCR3 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 3 contains the value to be compared to the counter LPTIM1_CNT and signaled on OC3 output. If channel CC3 is configured as input: CCR3 becomes read-only, it contains the counter value transferred by the last input capture 3 event. The LPTIM1_CCR3 register is read-only and cannot be programmed..
LPTIM compare register 4
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR4
rw |
Bits 0-15: Capture/compare 4 value If channel CC4 is configured as output: CCR4 is the value to be loaded in the capture/compare 4 register. Depending on the PRELOAD option, the CCR4 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 4 contains the value to be compared to the counter LPTIM1_CNT and signaled on OC4 output. If channel CC4 is configured as input: CCR4 becomes read-only, it contains the counter value transferred by the last input capture 4 event. The LPTIM1_CCR4 register is read-only and cannot be programmed..
0x40009400: LPTIM2 address block description
33/148 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPTIM2_ISR_INPUT | ||||||||||||||||||||||||||||||||
0x0 | LPTIM2_ISR_OUTPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM2_ICR_INPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM2_ICR_OUTPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM2_DIER_INPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM2_DIER_OUTPUT | ||||||||||||||||||||||||||||||||
0xc | LPTIM2_CFGR | ||||||||||||||||||||||||||||||||
0x10 | LPTIM2_CR | ||||||||||||||||||||||||||||||||
0x14 | LPTIM2_CCR1 | ||||||||||||||||||||||||||||||||
0x18 | LPTIM2_ARR | ||||||||||||||||||||||||||||||||
0x1c | LPTIM2_CNT | ||||||||||||||||||||||||||||||||
0x24 | LPTIM2_CFGR2 | ||||||||||||||||||||||||||||||||
0x28 | LPTIM2_RCR | ||||||||||||||||||||||||||||||||
0x2c | LPTIM2_CCMR1 | ||||||||||||||||||||||||||||||||
0x30 | LPTIM2_CCMR2 | ||||||||||||||||||||||||||||||||
0x34 | LPTIM2_CCR2 | ||||||||||||||||||||||||||||||||
0x38 | LPTIM2_CCR3 | ||||||||||||||||||||||||||||||||
0x3c | LPTIM2_CCR4 |
LPTIM2 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OF
r |
CC3OF
r |
CC2OF
r |
CC1OF
r |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: capture 1 interrupt flag If channel CC1 is configured as input: CC1IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR1 register. The corresponding interrupt or DMA request is generated if enabled. The CC1OF flag is set if the CC1IF flag was already high..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Capture 2 interrupt flag If channel CC2 is configured as input: CC2IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR2 register. The corresponding interrupt or DMA request is generated if enabled. The CC2OF flag is set if the CC2IF flag was already high. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture 3 interrupt flag If channel CC3 is configured as input: CC3IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR3 register. The corresponding interrupt or DMA request is generated if enabled. The CC3OF flag is set if the CC3IF flag was already high. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture 4 interrupt flag If channel CC4 is configured as input: CC4IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR4 register. The corresponding interrupt or DMA request is generated if enabled. The CC4OF flag is set if the CC4IF flag was already high. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture 1 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC1OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture 2 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC2OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture 3 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC3OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture 4 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC4OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM2 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
CMP4OK
r |
CMP3OK
r |
CMP2OK
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
CMP1OK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: Compare 1 interrupt flag If channel CC1 is configured as output: The CC1IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC1IF flag can be cleared by writing 1 to the CC1CF bit in the LPTIM_ICR register..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 3: Compare register 1 update OK CMP1OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR1 register has been successfully completed. CMP1OK flag can be cleared by writing 1 to the CMP1OKCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. The corresponding interrupt or DMA request is generated if enabled. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register. The UE flag is automatically cleared by hardware once the LPTIM_ARR register is written by any bus master like CPU or DMA..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Compare 2 interrupt flag If channel CC2 is configured as output: The CC2IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC2IF flag can be cleared by writing 1 to the CC2CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Compare 3 interrupt flag If channel CC3 is configured as output: The CC3IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC3IF flag can be cleared by writing 1 to the CC3CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Compare 4 interrupt flag If channel CC4 is configured as output: The CC4IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC4IF flag can be cleared by writing 1 to the CC4CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK CMP2OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR2 register has been successfully completed. CMP2OK flag can be cleared by writing 1 to the CMP2OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK CMP3OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR3 register has been successfully completed. CMP3OK flag can be cleared by writing 1 to the CMP3OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK CMP4OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR4 register has been successfully completed. CMP4OK flag can be cleared by writing 1 to the CMP4OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM2 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OCF
w |
CC3OCF
w |
CC2OCF
w |
CC1OCF
w |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture clear flag Writing 1 to this bit clears the CC1OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture clear flag Writing 1 to this bit clears the CC2OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture clear flag Writing 1 to this bit clears the CC3OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture clear flag Writing 1 to this bit clears the CC4OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM2 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
CMP4OKCF
w |
CMP3OKCF
w |
CMP2OKCF
w |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
CMP1OKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 3: Compare register 1 update OK clear flag Writing 1 to this bit clears the CMP1OK flag in the LPTIM_ISR register..
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK clear flag Writing 1 to this bit clears the CMP2OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK clear flag Writing 1 to this bit clears the CMP3OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK clear flag Writing 1 to this bit clears the CMP4OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM2 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
UEDE
rw |
CC1DE
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OIE
rw |
CC3OIE
rw |
CC2OIE
rw |
CC1OIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture interrupt enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 16: Capture/compare 1 DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 25: Capture/compare 2 DMA request enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 26: Capture/compare 3 DMA request enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 27: Capture/compare 4 DMA request enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
LPTIM2 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UEDE
rw |
CMP4OKIE
rw |
CMP3OKIE
rw |
CMP2OKIE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
CMP1OKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 3: Compare register 1 update OK interrupt enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
LPTIM configuration register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENC
rw |
COUNTMODE
rw |
PRELOAD
rw |
WAVE
rw |
TIMOUT
rw |
TRIGEN
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TRIGSEL
rw |
PRESC
rw |
TRGFLT
rw |
CKFLT
rw |
CKPOL
rw |
CKSEL
rw |
Bit 0: Clock selector The CKSEL bit selects which clock source the LPTIM uses:.
Bits 1-2: Clock Polarity When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active edge or edges used by the counter: If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 1 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 2 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 3 is active. Refer to Section125.4.15: Encoder mode for more details about Encoder mode sub-modes..
Bits 3-4: Configurable digital filter for external clock The CKFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an external clock signal before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 6-7: Configurable digital filter for trigger The TRGFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an internal trigger before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 9-11: Clock prescaler The PRESC bits configure the prescaler division factor. It can be one among the following division factors:.
Bits 13-15: Trigger selector The TRIGSEL bits select the trigger source that serves as a trigger event for the LPTIM among the below 8 available sources: See Section125.4.3: LPTIM input and trigger mapping for details..
Bits 17-18: Trigger enable and polarity The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the external trigger option is selected, three configurations are possible for the trigger active edge:.
Bit 19: Timeout enable The TIMOUT bit controls the Timeout feature.
Bit 20: Waveform shape The WAVE bit controls the output shape.
Bit 22: Registers update mode The PRELOAD bit controls the LPTIM2_ARR, LPTIM2_RCR and the LPTIM2_CCRx registers update modality.
Bit 23: counter mode enabled The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:.
Bit 24: Encoder mode enable The ENC bit controls the Encoder mode Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
LPTIM control register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: LPTIM enable The ENABLE bit is set and cleared by software..
Bit 1: LPTIM start in Single mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in single pulse mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the LPTIM in single pulse mode as soon as an external trigger is detected. If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM stops at the following match between LPTIM2_ARR and LPTIM2_CNT registers. This bit can only be set when the LPTIM is enabled. It is automatically reset by hardware..
Bit 2: Timer start in Continuous mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in Continuous mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the timer in Continuous mode as soon as an external trigger is detected. If this bit is set when a single pulse mode counting is ongoing, then the timer does not stop at the next match between the LPTIM2_ARR and LPTIM2_CNT registers and the LPTIM counter keeps counting in Continuous mode. This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware..
Bit 3: Counter reset This bit is set by software and cleared by hardware. When set to '1' this bit triggers a synchronous reset of the LPTIM2_CNT counter register. Due to the synchronous nature of this reset, it only takes place after a synchronization delay of 3 LPTimer core clock cycles (LPTimer core clock may be different from APB clock). This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware. COUNTRST must never be set to '1' by software before it is already cleared to '0' by hardware. Software must consequently check that COUNTRST bit is already cleared to '0' before attempting to set it to '1'..
Bit 4: Reset after read enable This bit is set and cleared by software. When RSTARE is set to '1', any read access to LPTIM2_CNT register asynchronously resets LPTIM2_CNT register content. This bit can be set only when the LPTIM is enabled..
LPTIM compare register 1
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
Bits 0-15: Capture/compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the capture/compare 1 register. Depending on the PRELOAD option, the CCR1 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 1 contains the value to be compared to the counter LPTIM2_CNT and signaled on OC1 output. If channel CC1 is configured as input: CCR1 becomes read-only, it contains the counter value transferred by the last input capture 1 event. The LPTIM2_CCR1 register is read-only and cannot be programmed..
LPTIM autoreload register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
LPTIM counter register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
LPTIM configuration register 2
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2SEL
rw |
IC1SEL
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IN2SEL
rw |
IN1SEL
rw |
Bits 0-1: LPTIM input 1 selection The IN1SEL bits control the LPTIM input 1 multiplexer, which connects LPTIM input 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 4-5: LPTIM input 2 selection The IN2SEL bits control the LPTIM input 2 multiplexer, which connects LPTIM input 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 16-17: LPTIM input capture 1 selection The IC1SEL bits control the LPTIM Input capture 1 multiplexer, which connects LPTIM Input capture 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 20-21: LPTIM input capture 2 selection The IC2SEL bits control the LPTIM Input capture 2 multiplexer, which connects LPTIM Input capture 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
LPTIM repetition register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
LPTIM capture/compare mode register 1
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2F
rw |
IC2PSC
rw |
CC2P
rw |
CC2E
rw |
CC2SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC1F
rw |
IC1PSC
rw |
CC1P
rw |
CC1E
rw |
CC1SEL
rw |
Bit 0: Capture/compare 1 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 1 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (LPTIM2_CCR1) or not..
Bits 2-3: Capture/compare 1 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC1 polarity for capture operations..
Bits 8-9: Input capture 1 prescaler This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1)..
Bits 12-13: Input capture 1 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 2 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 2 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 2 (LPTIM2_CCR2) or not..
Bits 18-19: Capture/compare 2 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC2 polarity for capture operations..
Bits 24-25: Input capture 2 prescaler This bitfield defines the ratio of the prescaler acting on the CC2 input (IC2)..
Bits 28-29: Input capture 2 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM capture/compare mode register 2
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC4F
rw |
IC4PSC
rw |
CC4P
rw |
CC4E
rw |
CC4SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC3F
rw |
IC3PSC
rw |
CC3P
rw |
CC3E
rw |
CC3SEL
rw |
Bit 0: Capture/compare 3 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 3 output enable. Condition: CC3 as output: Condition: CC3 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 3 (LPTIM2_CCR3) or not..
Bits 2-3: Capture/compare 3 output polarity. Condition: CC3 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC3 as input: This field is used to select the IC3 polarity for capture operations..
Bits 8-9: Input capture 3 prescaler This bitfield defines the ratio of the prescaler acting on the CC3 input (IC3)..
Bits 12-13: Input capture 3 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 4 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 4 output enable. Condition: CC4 as output: Condition: CC4 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 4 (LPTIM2_CCR4) or not..
Bits 18-19: Capture/compare 4 output polarity. Condition: CC4 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC4 as input: This field is used to select the IC4 polarity for capture operations..
Bits 24-25: Input capture 4 prescaler This bitfield defines the ratio of the prescaler acting on the CC4 input (IC4)..
Bits 28-29: Input capture 4 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM compare register 2
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR2
rw |
Bits 0-15: Capture/compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the capture/compare 2 register. Depending on the PRELOAD option, the CCR2 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 2 contains the value to be compared to the counter LPTIM2_CNT and signaled on OC2 output. If channel CC2 is configured as input: CCR2 becomes read-only, it contains the counter value transferred by the last input capture 2 event. The LPTIM2_CCR2 register is read-only and cannot be programmed..
LPTIM compare register 3
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR3
rw |
Bits 0-15: Capture/compare 3 value If channel CC3 is configured as output: CCR3 is the value to be loaded in the capture/compare 3 register. Depending on the PRELOAD option, the CCR3 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 3 contains the value to be compared to the counter LPTIM2_CNT and signaled on OC3 output. If channel CC3 is configured as input: CCR3 becomes read-only, it contains the counter value transferred by the last input capture 3 event. The LPTIM2_CCR3 register is read-only and cannot be programmed..
LPTIM compare register 4
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR4
rw |
Bits 0-15: Capture/compare 4 value If channel CC4 is configured as output: CCR4 is the value to be loaded in the capture/compare 4 register. Depending on the PRELOAD option, the CCR4 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 4 contains the value to be compared to the counter LPTIM2_CNT and signaled on OC4 output. If channel CC4 is configured as input: CCR4 becomes read-only, it contains the counter value transferred by the last input capture 4 event. The LPTIM2_CCR4 register is read-only and cannot be programmed..
0x40009000: LPTIM3 address block description
33/148 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPTIM3_ISR_INPUT | ||||||||||||||||||||||||||||||||
0x0 | LPTIM3_ISR_OUTPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM3_ICR_INPUT | ||||||||||||||||||||||||||||||||
0x4 | LPTIM3_ICR_OUTPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM3_DIER_INPUT | ||||||||||||||||||||||||||||||||
0x8 | LPTIM3_DIER_OUTPUT | ||||||||||||||||||||||||||||||||
0xc | LPTIM3_CFGR | ||||||||||||||||||||||||||||||||
0x10 | LPTIM3_CR | ||||||||||||||||||||||||||||||||
0x14 | LPTIM3_CCR1 | ||||||||||||||||||||||||||||||||
0x18 | LPTIM3_ARR | ||||||||||||||||||||||||||||||||
0x1c | LPTIM3_CNT | ||||||||||||||||||||||||||||||||
0x24 | LPTIM3_CFGR2 | ||||||||||||||||||||||||||||||||
0x28 | LPTIM3_RCR | ||||||||||||||||||||||||||||||||
0x2c | LPTIM3_CCMR1 | ||||||||||||||||||||||||||||||||
0x30 | LPTIM3_CCMR2 | ||||||||||||||||||||||||||||||||
0x34 | LPTIM3_CCR2 | ||||||||||||||||||||||||||||||||
0x38 | LPTIM3_CCR3 | ||||||||||||||||||||||||||||||||
0x3c | LPTIM3_CCR4 |
LPTIM3 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OF
r |
CC3OF
r |
CC2OF
r |
CC1OF
r |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: capture 1 interrupt flag If channel CC1 is configured as input: CC1IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR1 register. The corresponding interrupt or DMA request is generated if enabled. The CC1OF flag is set if the CC1IF flag was already high..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Capture 2 interrupt flag If channel CC2 is configured as input: CC2IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR2 register. The corresponding interrupt or DMA request is generated if enabled. The CC2OF flag is set if the CC2IF flag was already high. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture 3 interrupt flag If channel CC3 is configured as input: CC3IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR3 register. The corresponding interrupt or DMA request is generated if enabled. The CC3OF flag is set if the CC3IF flag was already high. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture 4 interrupt flag If channel CC4 is configured as input: CC4IF is set by hardware to inform application that the current value of the counter is captured in LPTIM_CCR4 register. The corresponding interrupt or DMA request is generated if enabled. The CC4OF flag is set if the CC4IF flag was already high. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture 1 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC1OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture 2 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC2OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture 3 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC3OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture 4 over-capture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing 1 to the CC4OCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM3 interrupt and status register [alternate]
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
16/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROK
r |
CMP4OK
r |
CMP3OK
r |
CMP2OK
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IF
r |
CC3IF
r |
CC2IF
r |
REPOK
r |
UE
r |
DOWN
r |
UP
r |
ARROK
r |
CMP1OK
r |
EXTTRIG
r |
ARRM
r |
CC1IF
r |
Bit 0: Compare 1 interrupt flag If channel CC1 is configured as output: The CC1IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC1IF flag can be cleared by writing 1 to the CC1CF bit in the LPTIM_ICR register..
Bit 1: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT registers value reached the LPTIM_ARR registers value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register..
Bit 2: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register..
Bit 3: Compare register 1 update OK CMP1OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR1 register has been successfully completed. CMP1OK flag can be cleared by writing 1 to the CMP1OKCF bit in the LPTIM_ICR register..
Bit 4: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register..
Bit 5: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: LPTIM update event occurred UE is set by hardware to inform application that an update event was generated. The corresponding interrupt or DMA request is generated if enabled. UE flag can be cleared by writing 1 to the UECF bit in the LPTIM_ICR register. The UE flag is automatically cleared by hardware once the LPTIM_ARR register is written by any bus master like CPU or DMA..
Bit 8: Repetition register update OK REPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_RCR register has been successfully completed. REPOK flag can be cleared by writing 1 to the REPOKCF bit in the LPTIM_ICR register..
Bit 9: Compare 2 interrupt flag If channel CC2 is configured as output: The CC2IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC2IF flag can be cleared by writing 1 to the CC2CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Compare 3 interrupt flag If channel CC3 is configured as output: The CC3IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC3IF flag can be cleared by writing 1 to the CC3CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Compare 4 interrupt flag If channel CC4 is configured as output: The CC4IF flag is set by hardware to inform application that LPTIM_CNT register value matches the compare register's value. CC4IF flag can be cleared by writing 1 to the CC4CF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK CMP2OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR2 register has been successfully completed. CMP2OK flag can be cleared by writing 1 to the CMP2OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK CMP3OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR3 register has been successfully completed. CMP3OK flag can be cleared by writing 1 to the CMP3OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK CMP4OK is set by hardware to inform application that the APB bus write operation to the LPTIM_CCR4 register has been successfully completed. CMP4OK flag can be cleared by writing 1 to the CMP4OKCF bit in the LPTIM_ICR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK DIEROK is set by hardware to inform application that the APB bus write operation to the LPTIM_DIER register has been successfully completed. DIEROK flag can be cleared by writing 1 to the DIEROKCF bit in the LPTIM_ICR register..
LPTIM3 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OCF
w |
CC3OCF
w |
CC2OCF
w |
CC1OCF
w |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture clear flag Writing 1 to this bit clears the CC1OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture clear flag Writing 1 to this bit clears the CC2OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture clear flag Writing 1 to this bit clears the CC3OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture clear flag Writing 1 to this bit clears the CC4OF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM3 interrupt clear register [alternate]
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIEROKCF
w |
CMP4OKCF
w |
CMP3OKCF
w |
CMP2OKCF
w |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4CF
w |
CC3CF
w |
CC2CF
w |
REPOKCF
w |
UECF
w |
DOWNCF
w |
UPCF
w |
ARROKCF
w |
CMP1OKCF
w |
EXTTRIGCF
w |
ARRMCF
w |
CC1CF
w |
Bit 0: Capture/compare 1 clear flag Writing 1 to this bit clears the CC1IF flag in the LPTIM_ISR register..
Bit 1: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register.
Bit 2: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register.
Bit 3: Compare register 1 update OK clear flag Writing 1 to this bit clears the CMP1OK flag in the LPTIM_ISR register..
Bit 4: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register.
Bit 5: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event clear flag Writing 1 to this bit clear the UE flag in the LPTIM_ISR register..
Bit 8: Repetition register update OK clear flag Writing 1 to this bit clears the REPOK flag in the LPTIM_ISR register..
Bit 9: Capture/compare 2 clear flag Writing 1 to this bit clears the CC2IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 clear flag Writing 1 to this bit clears the CC3IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 clear flag Writing 1 to this bit clears the CC4IF flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK clear flag Writing 1 to this bit clears the CMP2OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK clear flag Writing 1 to this bit clears the CMP3OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK clear flag Writing 1 to this bit clears the CMP4OK flag in the LPTIM_ISR register. Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 24: Interrupt enable register update OK clear flag Writing 1 to this bit clears the DIEROK flag in the LPTIM_ISR register..
LPTIM3 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
UEDE
rw |
CC1DE
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4OIE
rw |
CC3OIE
rw |
CC2OIE
rw |
CC1OIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 12: Capture/compare 1 over-capture interrupt enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 13: Capture/compare 2 over-capture interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 14: Capture/compare 3 over-capture interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 15: Capture/compare 4 over-capture interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 16: Capture/compare 1 DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
Bit 25: Capture/compare 2 DMA request enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 26: Capture/compare 3 DMA request enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 27: Capture/compare 4 DMA request enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
LPTIM3 interrupt enable register [alternate]
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UEDE
rw |
CMP4OKIE
rw |
CMP3OKIE
rw |
CMP2OKIE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
REPOKIE
rw |
UEIE
rw |
DOWNIE
rw |
UPIE
rw |
ARROKIE
rw |
CMP1OKIE
rw |
EXTTRIGIE
rw |
ARRMIE
rw |
CC1IE
rw |
Bit 0: Capture/compare 1 interrupt enable.
Bit 1: Autoreload match Interrupt Enable.
Bit 2: External trigger valid edge Interrupt Enable.
Bit 3: Compare register 1 update OK interrupt enable.
Bit 4: Autoreload register update OK Interrupt Enable.
Bit 5: Direction change to UP Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 6: Direction change to down Interrupt Enable Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
Bit 7: Update event interrupt enable.
Bit 8: Repetition register update OK interrupt Enable.
Bit 9: Capture/compare 2 interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 10: Capture/compare 3 interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 11: Capture/compare 4 interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 19: Compare register 2 update OK interrupt enable Note: If LPTIM does not implement at least 2 channels this bit is reserved. Refer to Section125.3..
Bit 20: Compare register 3 update OK interrupt enable Note: If LPTIM does not implement at least 3 channels this bit is reserved. Refer to Section125.3..
Bit 21: Compare register 4 update OK interrupt enable Note: If LPTIM does not implement at least 4 channels this bit is reserved. Refer to Section125.3..
Bit 23: Update event DMA request enable Note: If LPTIM does not implement at least 1 channel this bit is reserved. Refer to Section125.3..
LPTIM configuration register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENC
rw |
COUNTMODE
rw |
PRELOAD
rw |
WAVE
rw |
TIMOUT
rw |
TRIGEN
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TRIGSEL
rw |
PRESC
rw |
TRGFLT
rw |
CKFLT
rw |
CKPOL
rw |
CKSEL
rw |
Bit 0: Clock selector The CKSEL bit selects which clock source the LPTIM uses:.
Bits 1-2: Clock Polarity When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active edge or edges used by the counter: If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 1 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 2 is active. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 3 is active. Refer to Section125.4.15: Encoder mode for more details about Encoder mode sub-modes..
Bits 3-4: Configurable digital filter for external clock The CKFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an external clock signal before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 6-7: Configurable digital filter for trigger The TRGFLT value sets the number of consecutive equal samples that are detected when a level change occurs on an internal trigger before it is considered as a valid level transition. An internal clock source must be present to use this feature.
Bits 9-11: Clock prescaler The PRESC bits configure the prescaler division factor. It can be one among the following division factors:.
Bits 13-15: Trigger selector The TRIGSEL bits select the trigger source that serves as a trigger event for the LPTIM among the below 8 available sources: See Section125.4.3: LPTIM input and trigger mapping for details..
Bits 17-18: Trigger enable and polarity The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the external trigger option is selected, three configurations are possible for the trigger active edge:.
Bit 19: Timeout enable The TIMOUT bit controls the Timeout feature.
Bit 20: Waveform shape The WAVE bit controls the output shape.
Bit 22: Registers update mode The PRELOAD bit controls the LPTIM3_ARR, LPTIM3_RCR and the LPTIM3_CCRx registers update modality.
Bit 23: counter mode enabled The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:.
Bit 24: Encoder mode enable The ENC bit controls the Encoder mode Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Refer to Section125.3..
LPTIM control register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: LPTIM enable The ENABLE bit is set and cleared by software..
Bit 1: LPTIM start in Single mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in single pulse mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the LPTIM in single pulse mode as soon as an external trigger is detected. If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM stops at the following match between LPTIM3_ARR and LPTIM3_CNT registers. This bit can only be set when the LPTIM is enabled. It is automatically reset by hardware..
Bit 2: Timer start in Continuous mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = 00), setting this bit starts the LPTIM in Continuous mode. If the software start is disabled (TRIGEN[1:0] different than 00), setting this bit starts the timer in Continuous mode as soon as an external trigger is detected. If this bit is set when a single pulse mode counting is ongoing, then the timer does not stop at the next match between the LPTIM3_ARR and LPTIM3_CNT registers and the LPTIM counter keeps counting in Continuous mode. This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware..
Bit 3: Counter reset This bit is set by software and cleared by hardware. When set to '1' this bit triggers a synchronous reset of the LPTIM3_CNT counter register. Due to the synchronous nature of this reset, it only takes place after a synchronization delay of 3 LPTimer core clock cycles (LPTimer core clock may be different from APB clock). This bit can be set only when the LPTIM is enabled. It is automatically reset by hardware. COUNTRST must never be set to '1' by software before it is already cleared to '0' by hardware. Software must consequently check that COUNTRST bit is already cleared to '0' before attempting to set it to '1'..
Bit 4: Reset after read enable This bit is set and cleared by software. When RSTARE is set to '1', any read access to LPTIM3_CNT register asynchronously resets LPTIM3_CNT register content. This bit can be set only when the LPTIM is enabled..
LPTIM compare register 1
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
Bits 0-15: Capture/compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the capture/compare 1 register. Depending on the PRELOAD option, the CCR1 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 1 contains the value to be compared to the counter LPTIM3_CNT and signaled on OC1 output. If channel CC1 is configured as input: CCR1 becomes read-only, it contains the counter value transferred by the last input capture 1 event. The LPTIM3_CCR1 register is read-only and cannot be programmed..
LPTIM autoreload register
Offset: 0x18, size: 32, reset: 0x00000001, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
LPTIM counter register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
LPTIM configuration register 2
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2SEL
rw |
IC1SEL
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IN2SEL
rw |
IN1SEL
rw |
Bits 0-1: LPTIM input 1 selection The IN1SEL bits control the LPTIM input 1 multiplexer, which connects LPTIM input 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 4-5: LPTIM input 2 selection The IN2SEL bits control the LPTIM input 2 multiplexer, which connects LPTIM input 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 16-17: LPTIM input capture 1 selection The IC1SEL bits control the LPTIM Input capture 1 multiplexer, which connects LPTIM Input capture 1 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
Bits 20-21: LPTIM input capture 2 selection The IC2SEL bits control the LPTIM Input capture 2 multiplexer, which connects LPTIM Input capture 2 to one of the available inputs. For connection details refer to Section125.4.3: LPTIM input and trigger mapping..
LPTIM repetition register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
LPTIM capture/compare mode register 1
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC2F
rw |
IC2PSC
rw |
CC2P
rw |
CC2E
rw |
CC2SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC1F
rw |
IC1PSC
rw |
CC1P
rw |
CC1E
rw |
CC1SEL
rw |
Bit 0: Capture/compare 1 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 1 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (LPTIM3_CCR1) or not..
Bits 2-3: Capture/compare 1 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC1 polarity for capture operations..
Bits 8-9: Input capture 1 prescaler This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1)..
Bits 12-13: Input capture 1 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 2 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 2 output enable. This bit determines if a capture of the counter value can actually be done into the input capture/compare register 2 (LPTIM3_CCR2) or not..
Bits 18-19: Capture/compare 2 output polarity. Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. This field is used to select the IC2 polarity for capture operations..
Bits 24-25: Input capture 2 prescaler This bitfield defines the ratio of the prescaler acting on the CC2 input (IC2)..
Bits 28-29: Input capture 2 filter This bitfield defines the number of consecutive equal samples that are detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM capture/compare mode register 2
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC4F
rw |
IC4PSC
rw |
CC4P
rw |
CC4E
rw |
CC4SEL
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IC3F
rw |
IC3PSC
rw |
CC3P
rw |
CC3E
rw |
CC3SEL
rw |
Bit 0: Capture/compare 3 selection This bitfield defines the direction of the channel input (capture) or output mode..
Bit 1: Capture/compare 3 output enable. Condition: CC3 as output: Condition: CC3 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 3 (LPTIM3_CCR3) or not..
Bits 2-3: Capture/compare 3 output polarity. Condition: CC3 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC3 as input: This field is used to select the IC3 polarity for capture operations..
Bits 8-9: Input capture 3 prescaler This bitfield defines the ratio of the prescaler acting on the CC3 input (IC3)..
Bits 12-13: Input capture 3 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
Bit 16: Capture/compare 4 selection This bitfield defines the direction of the channel, input (capture) or output mode..
Bit 17: Capture/compare 4 output enable. Condition: CC4 as output: Condition: CC4 as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 4 (LPTIM3_CCR4) or not..
Bits 18-19: Capture/compare 4 output polarity. Condition: CC4 as output: Only bit2 is used to set polarity when output mode is enabled, bit3 is don't care. Condition: CC4 as input: This field is used to select the IC4 polarity for capture operations..
Bits 24-25: Input capture 4 prescaler This bitfield defines the ratio of the prescaler acting on the CC4 input (IC4)..
Bits 28-29: Input capture 4 filter This bitfield defines the number of consecutive equal samples that should be detected when a level change occurs on an external input capture signal before it is considered as a valid level transition. An internal clock source must be present to use this feature..
LPTIM compare register 2
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR2
rw |
Bits 0-15: Capture/compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the capture/compare 2 register. Depending on the PRELOAD option, the CCR2 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 2 contains the value to be compared to the counter LPTIM3_CNT and signaled on OC2 output. If channel CC2 is configured as input: CCR2 becomes read-only, it contains the counter value transferred by the last input capture 2 event. The LPTIM3_CCR2 register is read-only and cannot be programmed..
LPTIM compare register 3
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR3
rw |
Bits 0-15: Capture/compare 3 value If channel CC3 is configured as output: CCR3 is the value to be loaded in the capture/compare 3 register. Depending on the PRELOAD option, the CCR3 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 3 contains the value to be compared to the counter LPTIM3_CNT and signaled on OC3 output. If channel CC3 is configured as input: CCR3 becomes read-only, it contains the counter value transferred by the last input capture 3 event. The LPTIM3_CCR3 register is read-only and cannot be programmed..
LPTIM compare register 4
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR4
rw |
Bits 0-15: Capture/compare 4 value If channel CC4 is configured as output: CCR4 is the value to be loaded in the capture/compare 4 register. Depending on the PRELOAD option, the CCR4 register is immediately updated if the PRELOAD bit is reset and updated at next LPTIM update event if PREOAD bit is reset. The capture/compare register 4 contains the value to be compared to the counter LPTIM3_CNT and signaled on OC4 output. If channel CC4 is configured as input: CCR4 becomes read-only, it contains the counter value transferred by the last input capture 4 event. The LPTIM3_CCR4 register is read-only and cannot be programmed..
0x40008000: LPUART address block description
39/121 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPUART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | LPUART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | LPUART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | LPUART_CR3 | ||||||||||||||||||||||||||||||||
0xc | LPUART_BRR | ||||||||||||||||||||||||||||||||
0x18 | LPUART_RQR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | LPUART_ICR | ||||||||||||||||||||||||||||||||
0x24 | LPUART_RDR | ||||||||||||||||||||||||||||||||
0x28 | LPUART_TDR | ||||||||||||||||||||||||||||||||
0x2c | LPUART_PRESC |
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: RXFIFO Full interrupt enable This bit is set and cleared by software..
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
LPUART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
STOP
rw |
ADDM7
rw |
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the LPUART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bits 12-13: STOP bits These bits are used for programming the stop bits. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 24-31: Address of the LPUART node These bits give the address of the LPUART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
LPUART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/18 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
HDSEL
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NE=1 in the LPUART_ISR register)..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the LPUART is disabled (UE=0)..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the LPUART is disabled (UE=0)..
Bit 9: CTS enable This bit can only be written when the LPUART is disabled (UE=0).
Bit 10: CTS interrupt enable.
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the LPUART_RDR register. This bit can only be written when the LPUART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data..
Bit 13: DMA Disable on Reception Error This bit can only be written when the LPUART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the LPUART is disabled (UE=0)..
Bit 15: Driver enable polarity selection This bit can only be written when the LPUART is disabled (UE=0)..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved..
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved..
LPUART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
LPUART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: If the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the LPUART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit clears the RXNE flag. This enables discarding the received data without reading it, and avoid an overrun condition..
Bit 4: Transmit data flush request This bit is used when FIFO mode is enabled. TXFRQ bit is set to flush the whole FIFO. This sets the flag TXFE (TXFIFO empty, bit 23 in the LPUART_ISR register). Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
21/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: This error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, and so data can be read from the LPUART_RDR register. Every read of the LPUART_RDR frees a location in the RXFIFO. It is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the LPUART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the LPUART_ICR register or by writing to the LPUART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full, and so data can be written in the LPUART_TDR. Every write in the LPUART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the LPUART_TDR. The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE are set at the same time). An interrupt is generated if the TXFNFIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the LPUART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the LPUART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the LPUART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the LPUART_CR1 register..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the RXFIFO reaches the threshold programmed in RXFTCFG in LPUART_CR3 register i.e. the Receive FIFO contains RXFTCFG data. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the LPUART_CR3 register..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG in LPUART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the LPUART_CR3 register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
17/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE/RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXNE=1 (RXFF = 1 in case FIFO mode is enabled). It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the LPUART_RDR shift register has been transferred to the LPUART_RDR register. It is cleared by a read to the LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the LPUART_TDR register has been transferred into the shift register. It is cleared by a write to the LPUART_TDR register. An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
LPUART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTSCF
w |
TCCF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the LPUART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the LPUART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the LPUART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the LPUART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the LPUART_ISR register..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register..
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the LPUART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
LPUART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1254). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
LPUART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1254). When transmitting with the parity enabled (PCE bit set to 1 in the LPUART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
LPUART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40008400: LPUART address block description
39/121 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPUART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | LPUART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | LPUART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | LPUART_CR3 | ||||||||||||||||||||||||||||||||
0xc | LPUART_BRR | ||||||||||||||||||||||||||||||||
0x18 | LPUART_RQR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | LPUART_ICR | ||||||||||||||||||||||||||||||||
0x24 | LPUART_RDR | ||||||||||||||||||||||||||||||||
0x28 | LPUART_TDR | ||||||||||||||||||||||||||||||||
0x2c | LPUART_PRESC |
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: RXFIFO Full interrupt enable This bit is set and cleared by software..
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
LPUART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
STOP
rw |
ADDM7
rw |
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the LPUART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bits 12-13: STOP bits These bits are used for programming the stop bits. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 24-31: Address of the LPUART node These bits give the address of the LPUART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
LPUART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/18 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
HDSEL
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NE=1 in the LPUART_ISR register)..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the LPUART is disabled (UE=0)..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the LPUART is disabled (UE=0)..
Bit 9: CTS enable This bit can only be written when the LPUART is disabled (UE=0).
Bit 10: CTS interrupt enable.
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the LPUART_RDR register. This bit can only be written when the LPUART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data..
Bit 13: DMA Disable on Reception Error This bit can only be written when the LPUART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the LPUART is disabled (UE=0)..
Bit 15: Driver enable polarity selection This bit can only be written when the LPUART is disabled (UE=0)..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved..
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved..
LPUART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
LPUART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: If the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the LPUART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit clears the RXNE flag. This enables discarding the received data without reading it, and avoid an overrun condition..
Bit 4: Transmit data flush request This bit is used when FIFO mode is enabled. TXFRQ bit is set to flush the whole FIFO. This sets the flag TXFE (TXFIFO empty, bit 23 in the LPUART_ISR register). Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
21/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: This error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, and so data can be read from the LPUART_RDR register. Every read of the LPUART_RDR frees a location in the RXFIFO. It is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the LPUART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the LPUART_ICR register or by writing to the LPUART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full, and so data can be written in the LPUART_TDR. Every write in the LPUART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the LPUART_TDR. The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE are set at the same time). An interrupt is generated if the TXFNFIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the LPUART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the LPUART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the LPUART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the LPUART_CR1 register..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the RXFIFO reaches the threshold programmed in RXFTCFG in LPUART_CR3 register i.e. the Receive FIFO contains RXFTCFG data. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the LPUART_CR3 register..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG in LPUART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the LPUART_CR3 register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
17/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE/RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXNE=1 (RXFF = 1 in case FIFO mode is enabled). It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the LPUART_RDR shift register has been transferred to the LPUART_RDR register. It is cleared by a read to the LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the LPUART_TDR register has been transferred into the shift register. It is cleared by a write to the LPUART_TDR register. An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
LPUART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTSCF
w |
TCCF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the LPUART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the LPUART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the LPUART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the LPUART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the LPUART_ISR register..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register..
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the LPUART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
LPUART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1254). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
LPUART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1254). When transmitting with the parity enabled (PCE bit set to 1 in the LPUART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
LPUART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40008c00: LPUART address block description
39/121 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | LPUART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | LPUART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | LPUART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | LPUART_CR3 | ||||||||||||||||||||||||||||||||
0xc | LPUART_BRR | ||||||||||||||||||||||||||||||||
0x18 | LPUART_RQR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR | ||||||||||||||||||||||||||||||||
0x1c | LPUART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | LPUART_ICR | ||||||||||||||||||||||||||||||||
0x24 | LPUART_RDR | ||||||||||||||||||||||||||||||||
0x28 | LPUART_TDR | ||||||||||||||||||||||||||||||||
0x2c | LPUART_PRESC |
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: RXFIFO Full interrupt enable This bit is set and cleared by software..
LPUART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
DEAT
rw |
DEDT
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit..
Bit 1: LPUART enable in low-power mode When this bit is cleared, the LPUART cannot wake up the MCU from low-power mode. When this bit is set, the LPUART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the LPUART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE=0)..
Bit 13: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal.It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section132.4.14: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section131.5.21: RS232 Hardware flow control and RS485 Driver Enable. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 Start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE=0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software..
LPUART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
|||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
STOP
rw |
ADDM7
rw |
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the LPUART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bits 12-13: STOP bits These bits are used for programming the stop bits. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the LPUART is disabled (UE=0)..
Bits 24-31: Address of the LPUART node These bits give the address of the LPUART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
LPUART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/18 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
HDSEL
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NE=1 in the LPUART_ISR register)..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the LPUART is disabled (UE=0)..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the LPUART is disabled (UE=0)..
Bit 9: CTS enable This bit can only be written when the LPUART is disabled (UE=0).
Bit 10: CTS interrupt enable.
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the LPUART_RDR register. This bit can only be written when the LPUART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data..
Bit 13: DMA Disable on Reception Error This bit can only be written when the LPUART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the LPUART is disabled (UE=0)..
Bit 15: Driver enable polarity selection This bit can only be written when the LPUART is disabled (UE=0)..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wake-up from low-power mode flag). This bitfield can only be written when the LPUART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved..
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved..
LPUART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
LPUART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: If the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the LPUART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit clears the RXNE flag. This enables discarding the received data without reading it, and avoid an overrun condition..
Bit 4: Transmit data flush request This bit is used when FIFO mode is enabled. TXFRQ bit is set to flush the whole FIFO. This sets the flag TXFE (TXFIFO empty, bit 23 in the LPUART_ISR register). Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
21/21 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: This error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: This error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, and so data can be read from the LPUART_RDR register. Every read of the LPUART_RDR frees a location in the RXFIFO. It is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXFNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the LPUART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the LPUART_ICR register or by writing to the LPUART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full, and so data can be written in the LPUART_TDR. Every write in the LPUART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the LPUART_TDR. The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE are set at the same time). An interrupt is generated if the TXFNFIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the LPUART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the LPUART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the LPUART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the LPUART_CR1 register..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the RXFIFO reaches the threshold programmed in RXFTCFG in LPUART_CR3 register i.e. the Receive FIFO contains RXFTCFG data. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the LPUART_CR3 register..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG in LPUART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the LPUART_CR3 register..
LPUART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x008000C0, access: Unspecified
17/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTS
r |
CTSIF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the LPUART_ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the LPUART_CR3 register. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 2: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE/RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: In FIFO mode, this error is associated with the character in the LPUART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXNE=1 (RXFF = 1 in case FIFO mode is enabled). It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register, or EIE = 1 in the LPUART_CR3 register. Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the LPUART_RDR shift register has been transferred to the LPUART_RDR register. It is cleared by a read to the LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the LPUART_TDR register has been transferred into the shift register. It is cleared by a write to the LPUART_TDR register. An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register. Note: This bit is used during single buffer transmission..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE=1 in the LPUART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE=1in the LPUART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE=1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the LPUART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value..
LPUART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTSCF
w |
TCCF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the LPUART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the LPUART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the LPUART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the LPUART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the LPUART_ISR register..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register..
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the LPUART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section132.3: LPUART implementation on page1914..
LPUART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1254). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
LPUART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1254). When transmitting with the parity enabled (PCE bit set to 1 in the LPUART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
LPUART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40007800: OPAMP address block description
1/15 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | OPAMP_CSR | ||||||||||||||||||||||||||||||||
0x4 | OPAMP_OTR | ||||||||||||||||||||||||||||||||
0x8 | OPAMP_LPOTR |
OPAMP control/status register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
1/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OPA_RANGE
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CALOUT
r |
USERTRIM
rw |
CALSEL
rw |
CALON
rw |
VP_SEL
rw |
VM_SEL
rw |
PGA_GAIN
rw |
OPAMODE
rw |
OPALPM
rw |
OPAEN
rw |
Bit 0: Operational amplifier Enable.
Bit 1: Operational amplifier Low Power Mode The operational amplifier must be disable to change this configuration..
Bits 2-3: Operational amplifier PGA mode.
Bits 4-5: Operational amplifier Programmable amplifier gain value.
Bits 8-9: Inverting input selection These bits are used only when OPAMODE = 00, 01 or 10. 1x: Inverting input not externally connected. These configurations are valid only when OPAMODE = 10 (PGA mode).
Bit 10: Non inverted input selection.
Bit 12: Calibration mode enabled.
Bit 13: Calibration selection.
Bit 14: allows to switch from factory AOP offset trimmed values to AOP offset user trimmed values This bit is active for both mode normal and low-power..
Bit 15: Operational amplifier calibration output During calibration mode offset is trimmed when this signal toggle..
Bit 31: Operational amplifier power supply range for stability All AOP must be in power down to allow AOP-RANGE bit write. It applies to all AOP embedded in the product..
OPAMP offset trimming register in normal mode
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIMOFFSETP
rw |
TRIMOFFSETN
rw |
OPAMP offset trimming register in low-power mode
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIMLPOFFSETP
rw |
TRIMLPOFFSETN
rw |
0x40007000: PWR register block
17/193 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | PWR_CR1 | ||||||||||||||||||||||||||||||||
0x4 | PWR_CR2 | ||||||||||||||||||||||||||||||||
0x8 | PWR_CR3 | ||||||||||||||||||||||||||||||||
0xc | PWR_CR4 | ||||||||||||||||||||||||||||||||
0x10 | PWR_SR1 | ||||||||||||||||||||||||||||||||
0x14 | PWR_SR2 | ||||||||||||||||||||||||||||||||
0x18 | PWR_SCR | ||||||||||||||||||||||||||||||||
0x20 | PWR_PUCRA | ||||||||||||||||||||||||||||||||
0x24 | PWR_PDCRA | ||||||||||||||||||||||||||||||||
0x28 | PWR_PUCRB | ||||||||||||||||||||||||||||||||
0x2c | PWR_PDCRB | ||||||||||||||||||||||||||||||||
0x30 | PWR_PUCRC | ||||||||||||||||||||||||||||||||
0x34 | PWR_PDCRC | ||||||||||||||||||||||||||||||||
0x38 | PWR_PUCRD | ||||||||||||||||||||||||||||||||
0x3c | PWR_PDCRD | ||||||||||||||||||||||||||||||||
0x40 | PWR_PUCRE | ||||||||||||||||||||||||||||||||
0x44 | PWR_PDCRE | ||||||||||||||||||||||||||||||||
0x48 | PWR_PUCRF | ||||||||||||||||||||||||||||||||
0x4c | PWR_PDCRF |
Power control register 1
Offset: 0x0, size: 32, reset: 0x00000208, access: Unspecified
0/7 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPR
rw |
VOS
rw |
DBP
rw |
FPD_LPSLP
rw |
FPD_LPRUN
rw |
FPD_STOP
rw |
LPMS
rw |
Bits 0-2: Low-power mode selection These bits select the low-power mode entered when CPU enters the deepsleep mode. 1xx: Shutdown mode Note: If LPR bit is set, Stop 2 mode cannot be selected and Stop 1 mode shall be entered instead of Stop 2. Note: In Standby mode, SRAM2 can be preserved or not, depending on RRS bit configuration in PWR_CR3..
Bit 3: Flash memory powered down during Stop mode. This bit determines whether the flash memory is put in power-down mode or remains in idle mode when the device enters Stop mode..
Bit 4: Flash memory powered down during Low-power run mode. This bit determines whether the flash memory is put in power-down mode or remains in idle mode when the device enters Low-power sleep mode..
Bit 5: Flash memory powered down during Low-power sleep mode. This bit determines whether the flash memory is put in power-down mode or remains in idle mode when the device enters Low-power sleep mode..
Bit 8: Disable backup domain write protection In reset state, the RTC and backup registers are protected against parasitic write access. This bit must be set to enable write access to these registers..
Bits 9-10: Voltage scaling range selection.
Bit 14: Low-power run When this bit is set, the regulator is switched from main mode (MR) to low-power mode (LPR). Note: Stop 2 mode cannot be entered when LPR bit is set. Stop 1 is entered instead..
Power control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 0: Programmable voltage detector enable Note: This bit is write-protected when the bit PVDL (PVD Lock) is set in the SYSCFG_CBR register. Note: This bit is reset only by a system reset..
Bits 1-3: Programmable voltage detector level selection. These bits select the voltage threshold detected by the programmable voltage detector: Note: These bits are write-protected when the bit PVDL (PVD Lock) is set in the SYSCFG_CBR register. Note: These bits are reset only by a system reset..
Bit 4: Peripheral voltage monitoring 1 enable: V<sub>DDUSB</sub> vs. 1.21V.
Bit 5: Peripheral voltage monitoring 3 enable: V<sub>DDA</sub> vs. 1.621V.
Bit 6: Peripheral voltage monitoring 4 enable: V<sub>DDA</sub> vs. 1.861V.
Bit 10: V<sub>DDUSB</sub> USB supply valid This bit is used to validate the V<sub>DDUSB</sub> supply for electrical and logical isolation purpose. Setting this bit is mandatory to use the USB FS peripheral. If V<sub>DDUSB</sub> is not always present in the application, the PVM can be used to determine whether this supply is ready or not..
Power control register 3
Offset: 0x8, size: 32, reset: 0x00008000, access: Unspecified
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EIWUL
rw |
APC
rw |
ENULP
rw |
RRS
rw |
EWUP7
rw |
EWUP5
rw |
EWUP4
rw |
EWUP3
rw |
EWUP2
rw |
EWUP1
rw |
Bit 0: Enable Wake-up pin WKUP1 When this bit is set, the external wake-up pin WKUP1 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs. The active edge is configured via the WP1 bit in the PWR_CR4 register..
Bit 1: Enable Wake-up pin WKUP2 When this bit is set, the external wake-up pin WKUP2 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs. The active edge is configured via the WP2 bit in the PWR_CR4 register..
Bit 2: Enable Wake-up pin WKUP3 When this bit is set, the external wake-up pin WKUP3 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs. The active edge is configured via the WP3 bit in the PWR_CR4 register..
Bit 3: Enable Wake-up pin WKUP4 When this bit is set, the external wake-up pin WKUP4 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs. The active edge is configured via the WP4 bit in the PWR_CR4 register..
Bit 4: Enable Wake-up pin WKUP5 When this bit is set, the external wake-up pin WKUP5 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs.The active edge is configured via the WP5 bit in the PWR_CR4 register..
Bit 6: Enable Wake-up pin WKUP7. When this bit is set, the external wake-up pin WKUP7 is enabled and triggers a wake-up from Standby or Shutdown event when a rising or a falling edge occurs.The active edge is configured via the WP7 bit in the PWR_CR4 register..
Bit 8: SRAM2 retention in Standby mode.
Bit 9: Enable ULP sampling When this bit is set, the BORL, BORH and PVD are periodically sampled instead continuous monitoring to reduce power consumption. Fast supply drop between two sample/compare phases is not detected in this mode. This bit has impact only on STOP2, Standby and shutdown low power modes..
Bit 10: Apply pull-up and pull-down configuration When this bit is set, the I/O pull-up and pull-down configurations defined in the PWR_PUCRx and PWR_PDCRx registers are applied. When this bit is cleared, the PWR_PUCRx and PWR_PDCRx registers are not applied to the I/Os, instead the I/Os are in floating mode during Standby or configured according GPIO controller GPIOx_PUPDR register during RUN mode..
Bit 15: Enable internal wake-up line.
Power control register 4
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
Bit 0: Wake-up pin WKUP1 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP1.
Bit 1: Wake-up pin WKUP2 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP2.
Bit 2: Wake-up pin WKUP3 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP3.
Bit 3: Wake-up pin WKUP4 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP4.
Bit 4: Wake-up pin WKUP5 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP5.
Bit 6: Wake-up pin WKUP7 polarity This bit defines the polarity used for an event detection on external wake-up pin, WKUP7.
Bit 8: V<sub>BAT</sub> battery charging enable.
Bit 9: V<sub>BAT</sub> battery charging resistor selection.
Power status register 1
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
9/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUFI
r |
STOPF
r |
SBF
r |
WUF7
r |
WUF5
r |
WUF4
r |
WUF3
r |
WUF2
r |
WUF1
r |
Bit 0: Wake-up flag 1 This bit is set when a wake-up event is detected on wake-up pin, WKUP1. It is cleared by writing 1 in the CWUF1 bit of the PWR_SCR register..
Bit 1: Wake-up flag 2 This bit is set when a wake-up event is detected on wake-up pin, WKUP2. It is cleared by writing 1 in the CWUF2 bit of the PWR_SCR register..
Bit 2: Wake-up flag 3 This bit is set when a wake-up event is detected on wake-up pin, WKUP3. It is cleared by writing 1 in the CWUF3 bit of the PWR_SCR register..
Bit 3: Wake-up flag 4 This bit is set when a wake-up event is detected on wake-up pin,WKUP4. It is cleared by writing 1 in the CWUF4 bit of the PWR_SCR register..
Bit 4: Wake-up flag 5 This bit is set when a wake-up event is detected on wake-up pin, WKUP5. It is cleared by writing 1 in the CWUF5 bit of the PWR_SCR register..
Bit 6: Wake-up flag 7 This bit is set when a wake-up event is detected on wake-up pin, WKUP7. It is cleared by writing 1 in the CWUF7 bit of the PWR_SCR register..
Bit 8: Standby flag This bit is set by hardware when the device enters the Standby mode and is cleared by setting the CSBF bit in the PWR_SCR register, or by a power-on reset. It is not cleared by the system reset..
Bits 9-11: Stop Flags These bits are set by hardware when the device enters any stop mode and are cleared by setting the CSBF bit in the PWR_SCR register, or by a power-on reset. It is not cleared by the system reset..
Bit 15: Wake-up flag internal This bit is set when a wake-up is detected on the internal wake-up line. It is cleared when all internal wake-up sources are cleared..
Power status register 2
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
8/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVMO4
r |
PVMO3
r |
PVMO1
r |
PVDO
r |
VOSF
r |
REGLPF
r |
REGLPS
r |
FLASH_RDY
r |
Bit 7: Flash ready flag This bit is set by hardware to indicate when the flash memory is readey to be accessed after wake-up from power-down. To place the flash memory in power-down, set either FPD_LPRUN, FPD_LPSLP or FPD_STP bits. Note : If the system boots from SRAM, the user application must wait until the FLASH_RDY bit is set, prior to jumping to flash memory..
Bit 8: Low-power regulator started This bit provides the information whether the low-power regulator is ready after a power-on reset or a Standby/Shutdown. If the Standby mode is entered while REGLPS bit is still cleared, the wake-up from Standby mode time may be increased..
Bit 9: Low-power regulator flag This bit is set by hardware when the MCU is in Low-power run mode. When the MCU exits from the Low-power run mode, this bit remains at 1 until the regulator is ready in main mode. A polling on this bit must be done before increasing the product frequency. This bit is cleared by hardware when the regulator is ready..
Bit 10: Voltage scaling flag A delay is required for the internal regulator to be ready after the voltage scaling has been changed. VOSF indicates that the regulator reached the voltage level defined with VOS bits of the PWR_CR1 register..
Bit 11: Programmable voltage detector output.
Bit 12: Peripheral voltage monitoring output: V<sub>DDUSB</sub> vs. 1.2 V Note: PVMO1 is cleared when PVM1 is disabled (PVME1 = 0). After enabling PVM1, the PVM1 output is valid after the PVM1 wake-up time..
Bit 14: Peripheral voltage monitoring output: V<sub>DDA</sub> vs. 1.621V Note: PVMO3 is cleared when PVM3 is disabled (PVME3 = 0). After enabling PVM3, the PVM3 output is valid after the PVM3 wake-up time..
Bit 15: Peripheral voltage monitoring output: V<sub>DDA</sub> vs. 2.21V Note: PVMO4 is cleared when PVM4 is disabled (PVME4 = 0). After enabling PVM4, the PVM4 output is valid after the PVM4 wake-up time..
Power status clear register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
Bit 0: Clear wake-up flag 1 Setting this bit clears the WUF1 flag in the PWR_SR1 register..
Bit 1: Clear wake-up flag 2 Setting this bit clears the WUF2 flag in the PWR_SR1 register..
Bit 2: Clear wake-up flag 3 Setting this bit clears the WUF3 flag in the PWR_SR1 register..
Bit 3: Clear wake-up flag 4 Setting this bit clears the WUF4 flag in the PWR_SR1 register..
Bit 4: Clear wake-up flag 5 Setting this bit clears the WUF5 flag in the PWR_SR1 register..
Bit 6: Clear wake-up flag 7 Setting this bit clears the WUF7 flag in the PWR_SR1 register..
Bit 8: Clear standby flag Setting this bit clears the SBF flag in the PWR_SR1 register..
Power Port A pull-up control register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PU15
rw |
PU14
rw |
PU13
rw |
PU12
rw |
PU11
rw |
PU10
rw |
PU9
rw |
PU8
rw |
PU7
rw |
PU6
rw |
PU5
rw |
PU4
rw |
PU3
rw |
PU2
rw |
PU1
rw |
PU0
rw |
Bit 0: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 1: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 2: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 3: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 4: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 5: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 6: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 7: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 8: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 9: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 10: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 11: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 12: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 13: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 14: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 15: Port A pull-up bit y (y1=115 to 0) When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Power Port A pull-down control register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD15
rw |
PD14
rw |
PD13
rw |
PD12
rw |
PD11
rw |
PD10
rw |
PD9
rw |
PD8
rw |
PD7
rw |
PD6
rw |
PD5
rw |
PD4
rw |
PD3
rw |
PD2
rw |
PD1
rw |
PD0
rw |
Bit 0: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 4: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 5: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 6: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 7: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 10: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 11: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 12: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 13: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 14: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Bit 15: Port A pull-down bit y When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register..
Power Port B pull-up control register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PU15
rw |
PU14
rw |
PU13
rw |
PU12
rw |
PU11
rw |
PU10
rw |
PU9
rw |
PU8
rw |
PU7
rw |
PU6
rw |
PU5
rw |
PU4
rw |
PU3
rw |
PU2
rw |
PU1
rw |
PU0
rw |
Bit 0: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 4: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 5: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 6: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 7: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 10: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 11: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 12: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 13: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 14: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Bit 15: Port B pull-up bit y When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register..
Power Port B pull-down control register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD15
rw |
PD14
rw |
PD13
rw |
PD12
rw |
PD11
rw |
PD10
rw |
PD9
rw |
PD8
rw |
PD7
rw |
PD6
rw |
PD5
rw |
PD4
rw |
PD3
rw |
PD2
rw |
PD1
rw |
PD0
rw |
Bit 0: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 4: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 5: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 6: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 7: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 10: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 11: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 12: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 13: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 14: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Bit 15: Port B pull-down bit y When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register..
Power Port C pull-up control register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PU15
rw |
PU14
rw |
PU13
rw |
PU12
rw |
PU11
rw |
PU10
rw |
PU9
rw |
PU8
rw |
PU7
rw |
PU6
rw |
PU5
rw |
PU4
rw |
PU3
rw |
PU2
rw |
PU1
rw |
PU0
rw |
Bit 0: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 1: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 2: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 3: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 4: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 5: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 6: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 7: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 8: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 9: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 10: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 11: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 12: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 13: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 14: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 15: Port C pull-up bit y When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Power Port C pull-down control register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD15
rw |
PD14
rw |
PD13
rw |
PD12
rw |
PD11
rw |
PD10
rw |
PD9
rw |
PD8
rw |
PD7
rw |
PD6
rw |
PD5
rw |
PD4
rw |
PD3
rw |
PD2
rw |
PD1
rw |
PD0
rw |
Bit 0: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 4: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 5: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 6: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 7: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 10: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 11: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 12: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 13: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 14: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Bit 15: Port C pull-down bit y When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register..
Power Port D pull-up control register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/13 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PU13
rw |
PU12
rw |
PU11
rw |
PU10
rw |
PU9
rw |
PU8
rw |
PU6
rw |
PU5
rw |
PU4
rw |
PU3
rw |
PU2
rw |
PU1
rw |
PU0
rw |
Bit 0: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 1: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 2: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 3: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 4: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 5: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 6: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 8: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 9: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 10: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 11: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 12: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 13: Port D pull-up bit y When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Power Port D pull-down control register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/13 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD13
rw |
PD12
rw |
PD11
rw |
PD10
rw |
PD9
rw |
PD8
rw |
PD6
rw |
PD5
rw |
PD4
rw |
PD3
rw |
PD2
rw |
PD1
rw |
PD0
rw |
Bit 0: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 4: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 5: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 6: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 10: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 11: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 12: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Bit 13: Port D pull-down bit y When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register..
Power Port E pull-up control register
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 3: Port E pull-up bit 3 When set, this bit activates the pull-up on PE[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 7: Port E pull-up bit y When set, this bit activates the pull-up on PE[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 8: Port E pull-up bit y When set, this bit activates the pull-up on PE[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 9: Port E pull-up bit y When set, this bit activates the pull-up on PE[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Power Port E pull-down control register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 3: Port E pull-down bit 3 When set, this bit activates the pull-down on PE[y] when APC bit is set in PWR_CR3 register..
Bit 7: Port E pull-down bit y When set, this bit activates the pull-down on PE[y] when APC bit is set in PWR_CR3 register..
Bit 8: Port E pull-down bit y When set, this bit activates the pull-down on PE[y] when APC bit is set in PWR_CR3 register..
Bit 9: Port E pull-down bit y When set, this bit activates the pull-down on PE[y] when APC bit is set in PWR_CR3 register..
Power Port F pull-up control register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 0: Port F pull-up bit y When set, this bit activates the pull-up on PH[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 1: Port F pull-up bit y When set, this bit activates the pull-up on PH[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 2: Port F pull-up bit y When set, this bit activates the pull-up on PH[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Bit 3: Port F pull-up bit y When set, this bit activates the pull-up on PH[y] when APC bit is set in PWR_CR3 register. If the corresponding PDy bit is also set, the pull-up is not activated and the pull-down is activated instead with highest priority..
Power Port F pull-down control register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bit 0: Port F pull-down bit y When set, this bit activates the pull-down on PH[y] when APC bit is set in PWR_CR3 register..
Bit 1: Port F pull-down bit y When set, this bit activates the pull-down on PH[y] when APC bit is set in PWR_CR3 register..
Bit 2: Port F pull-down bit y When set, this bit activates the pull-down on PH[y] when APC bit is set in PWR_CR3 register..
Bit 3: Port F pull-down bit y When set, this bit activates the pull-down on PH[y] when APC bit is set in PWR_CR3 register..
0x40021000: RCC address block description
30/244 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | RCC_CR | ||||||||||||||||||||||||||||||||
0x4 | RCC_ICSCR | ||||||||||||||||||||||||||||||||
0x8 | RCC_CFGR | ||||||||||||||||||||||||||||||||
0xc | RCC_PLLCFGR | ||||||||||||||||||||||||||||||||
0x18 | RCC_CIER | ||||||||||||||||||||||||||||||||
0x1c | RCC_CIFR | ||||||||||||||||||||||||||||||||
0x20 | RCC_CICR | ||||||||||||||||||||||||||||||||
0x28 | RCC_AHBRSTR | ||||||||||||||||||||||||||||||||
0x2c | RCC_IOPRSTR | ||||||||||||||||||||||||||||||||
0x38 | RCC_APBRSTR1 | ||||||||||||||||||||||||||||||||
0x40 | RCC_APBRSTR2 | ||||||||||||||||||||||||||||||||
0x48 | RCC_AHBENR | ||||||||||||||||||||||||||||||||
0x4c | RCC_IOPENR | ||||||||||||||||||||||||||||||||
0x50 | RCC_DBGCFGR | ||||||||||||||||||||||||||||||||
0x58 | RCC_APBENR1 | ||||||||||||||||||||||||||||||||
0x60 | RCC_APBENR2 | ||||||||||||||||||||||||||||||||
0x68 | RCC_AHBSMENR | ||||||||||||||||||||||||||||||||
0x6c | RCC_IOPSMENR | ||||||||||||||||||||||||||||||||
0x78 | RCC_APBSMENR1 | ||||||||||||||||||||||||||||||||
0x80 | RCC_APBSMENR2 | ||||||||||||||||||||||||||||||||
0x88 | RCC_CCIPR | ||||||||||||||||||||||||||||||||
0x90 | RCC_BDCR | ||||||||||||||||||||||||||||||||
0x94 | RCC_CSR | ||||||||||||||||||||||||||||||||
0x98 | RCC_CRRCR |
Clock control register
Offset: 0x0, size: 32, reset: 0x00000083, access: Unspecified
5/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLLRDY
r |
PLLON
rw |
CSSON
rw |
HSEBYP
rw |
HSERDY
r |
HSEON
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
HSIASFS
r |
HSIRDY
r |
HSIKERON
rw |
HSION
rw |
MSIRANGE
rw |
MSIRGSEL
rw |
MSIPLLEN
rw |
MSIRDY
r |
MSION
rw |
Bit 0: MSI clock enable This bit is set and cleared by software. Cleared by hardware to stop the MSI oscillator when entering Stop, Standby or Shutdown mode. Set by hardware to force the MSI oscillator ON when exiting Standby or Shutdown mode. Set by hardware to force the MSI oscillator ON when STOPWUCK=0 when exiting from Stop modes, or in case of a failure of the HSE oscillator Set by hardware when used directly or indirectly as system clock..
Bit 1: MSI clock ready flag This bit is set by hardware to indicate that the MSI oscillator is stable. Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles..
Bit 2: MSI clock PLL enable Set and cleared by software to enable/ disable the PLL part of the MSI clock source. MSIPLLEN must be enabled after LSE is enabled (LSEON enabled) and ready (LSERDY set by hardware).There is a hardware protection to avoid enabling MSIPLLEN if LSE is not ready. This bit is cleared by hardware when LSE is disabled (LSEON = 0) or when the Clock Security System on LSE detects a LSE failure (refer to RCC_CSR register)..
Bit 3: MSI clock range selection Set by software to select the MSI clock range with MSIRANGE[3:0]. Write 0 has no effect. After a standby or a reset MSIRGSEL is at 0 and the MSI range value is provided by MSISRANGE in CSR register..
Bits 4-7: MSI clock ranges These bits are configured by software to choose the frequency range of MSI when MSIRGSEL is set.12 frequency ranges are available: others: not allowed (hardware write protection) Note: Warning: MSIRANGE can be modified when MSI is OFF (MSION=0) or when MSI is ready (MSIRDY=1). MSIRANGE must NOT be modified when MSI is ON and NOT ready (MSION=1 and MSIRDY=0).
Bit 8: HSI16 clock enable Set and cleared by software. Cleared by hardware to stop the HSI16 oscillator when entering Stop, Standby, or Shutdown mode. Forced by hardware to keep the HSI16 oscillator ON when it is used directly or indirectly as system clock (also when leaving Stop, Standby, or Shutdown modes, or in case of failure of the HSE oscillator used for system clock)..
Bit 9: HSI16 always enable for peripheral kernels. Set and cleared by software to force HSI16 ON even in Stop modes. The HSI16 can only feed USART1, USART2, CEC and I2C1 peripherals configured with HSI16 as kernel clock. Keeping the HSI16 ON in Stop mode allows avoiding to slow down the communication speed because of the HSI16 startup time. This bit has no effect on HSION value..
Bit 10: HSI16 clock ready flag Set by hardware to indicate that HSI16 oscillator is stable. This bit is set only when HSI16 is enabled by software by setting HSION. Note: Once the HSION bit is cleared, HSIRDY goes low after 6 HSI16 clock cycles..
Bit 11: HSI16 automatic start from Stop Set and cleared by software. When the system wake-up clock is MSI, this bit is used to wake up the HSI16 is parallel of the system wake-up..
Bit 16: HSE clock enable Set and cleared by software. Cleared by hardware to stop the HSE oscillator when entering Stop, Standby, or Shutdown mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock..
Bit 17: HSE clock ready flag Set by hardware to indicate that the HSE oscillator is stable. Note: Once the HSEON bit is cleared, HSERDY goes low after 6 HSE clock cycles..
Bit 18: HSE crystal oscillator bypass Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled..
Bit 19: Clock security system enable Set by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if a HSE clock failure is detected. This bit is set only and is cleared by reset..
Bit 24: PLL enable Set and cleared by software to enable the PLL. Cleared by hardware when entering Stop, Standby or Shutdown mode. This bit cannot be reset if the PLL clock is used as the system clock..
Bit 25: PLL clock ready flag Set by hardware to indicate that the PLL is locked..
Internal clock sources calibration register
Offset: 0x4, size: 32, reset: 0x40004000, access: Unspecified
2/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HSITRIM
rw |
HSICAL
r |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MSITRIM
rw |
MSICAL
r |
Bits 0-7: MSI clock calibration These bits are initialized at startup with the factory-programmed MSI calibration trim value. When MSITRIM is written, MSICAL is updated with the sum of MSITRIM and the factory trim value..
Bits 8-15: MSI clock trimming These bits provide an additional user-programmable trimming value that is added to the MSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the MSI..
Bits 16-23: HSI16 clock calibration These bits are initialized at startup with the factory-programmed HSI16 calibration trim value. When HSITRIM is written, HSICAL is updated with the sum of HSITRIM and the factory trim value..
Bits 24-30: HSI16 clock trimming These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the HSI16. The default value is 64 when added to the HSICAL value, trim the HSI16 to 161MHz 1 11%..
Clock configuration register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
1/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCOPRE
rw |
MCOSEL
rw |
MCO2PRE
rw |
MCO2SEL
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
STOPWUCK
rw |
PPRE
rw |
HPRE
rw |
SWS
r |
SW
rw |
Bits 0-2: System clock switch This bitfield is controlled by software and hardware. The bitfield selects the clock for SYSCLK as follows: Others: Reserved The setting is forced by hardware to 000 (HSISYS selected) when the MCU exits Stop, Standby, or Shutdown mode, or when the setting is 001 (HSE selected) and HSE oscillator failure is detected..
Bits 3-5: System clock switch status This bitfield is controlled by hardware to indicate the clock source used as system clock: Others: Reserved.
Bits 8-11: AHB prescaler This bitfield is controlled by software. To produce HCLK clock, it sets the division factor of SYSCLK clock as follows: 0xxx: 1 Caution: Depending on the device voltage range, the software has to set correctly these bits to ensure that the system frequency does not exceed the maximum allowed frequency (for more details, refer to Section14.1.4: Dynamic voltage scaling management). After a write operation to these bits and before decreasing the voltage range, this register must be read to be sure that the new value has been taken into account..
Bits 12-14: APB prescaler This bitfield is controlled by software. To produce PCLK clock, it sets the division factor of HCLK clock as follows: 0xx: 1.
Bit 15: Wake-up from Stop and CSS backup clock selection Set and cleared by software to select the system clock used when exiting Stop mode. The selected clock is also used as emergency clock for the Clock Security System on HSE. Warning: STOPWUCK must not be modified when the Clock Security System is enabled by HSECSSON in RCC_CR register and the system clock is HSE (SWS=10) or a switch on HSE is requested (SW=10)..
Bits 16-19: Microcontroller clock output 2 clock selector This bitfield is controlled by software. It sets the clock selector for MCO2 output as follows: Others: Reserved Note: This clock output may have some truncated cycles at startup or during MCO2 clock source switching..
Bits 20-23: Microcontroller clock output 2 prescaler This bitfield is controlled by software. It sets the division factor of the clock sent to the MCO2 output as follows: ... Others: reserved It is highly recommended to set this field before the MCO2 output is enabled..
Bits 24-27: Microcontroller clock output clock selector This bitfield is controlled by software. It sets the clock selector for MCO output as follows: Others: Reserved Note: This clock output may have some truncated cycles at startup or during MCO clock source switching..
Bits 28-31: Microcontroller clock output prescaler This bitfield is controlled by software. It sets the division factor of the clock sent to the MCO output as follows: ... Others: reserved It is highly recommended to set this field before the MCO output is enabled..
PLL configuration register
Offset: 0xc, size: 32, reset: 0x00001000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLLR
rw |
PLLREN
rw |
PLLQ
rw |
PLLQEN
rw |
PLLP
rw |
PLLPEN
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PLLN
rw |
PLLM
rw |
PLLSRC
rw |
Bits 0-1: PLL input clock source This bit is controlled by software to select PLL clock source, as follows: The bitfield can be written only when the PLL is disabled. When the PLL is not used, selecting 00 allows saving power..
Bits 4-6: Division factor M of the PLL input clock divider This bit is controlled by software to divide the PLL input clock before the actual phase-locked loop, as follows: The bitfield can be written only when the PLL is disabled. Caution: The software must set these bits so that the PLL input frequency after the /M divider is between 2.66 and 161MHz..
Bits 8-14: PLL frequency multiplication factor N This bit is controlled by software to set the division factor of the f<sub>VCO</sub> feedback divider (that determines the PLL multiplication ratio) as follows: ... ... The bitfield can be written only when the PLL is disabled. Caution: The software must set these bits so that the VCO output frequency is between 96 and 3441MHz..
Bit 16: PLLPCLK clock output enable This bit is controlled by software to enable/disable the PLLPCLK clock output of the PLL: Disabling the PLLPCLK clock output, when not used, allows saving power..
Bits 17-21: PLL VCO division factor P for PLLPCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor P as follows: ... The bitfield can be written only when the PLL is disabled. Caution: The software must set this bitfield so as not to exceed 541MHz on this clock..
Bit 24: PLLQCLK clock output enable This bit is controlled by software to enable/disable the PLLQCLK clock output of the PLL: Disabling the PLLQCLK clock output, when not used, allows saving power..
Bits 25-27: PLL VCO division factor Q for PLLQCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor Q as follows: The bitfield can be written only when the PLL is disabled. Caution: The software must set this bitfield so as not to exceed 541MHz on this clock..
Bit 28: PLLRCLK clock output enable This bit is controlled by software to enable/disable the PLLRCLK clock output of the PLL: This bit cannot be written when PLLRCLK output of the PLL is selected for system clock. Disabling the PLLRCLK clock output, when not used, allows saving power..
Bits 29-31: PLL VCO division factor R for PLLRCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor R as follows: The bitfield can be written only when the PLL is disabled. The PLLRCLK clock can be selected as system clock. Caution: The software must set this bitfield so as not to exceed 122MHz on this clock..
Clock interrupt enable register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HSI48RDYIE
rw |
LSECSSIE
rw |
PLLRDYIE
rw |
HSERDYIE
rw |
HSIRDYIE
rw |
MSIRDYIE
rw |
LSERDYIE
rw |
LSIRDYIE
rw |
Bit 0: LSI ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the LSI oscillator stabilization:.
Bit 1: LSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the LSE oscillator stabilization:.
Bit 2: MSI ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the MSI oscillator stabilization..
Bit 3: HSI16 ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSI16 oscillator stabilization:.
Bit 4: HSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSE oscillator stabilization:.
Bit 5: PLL ready interrupt enable Set and cleared by software to enable/disable interrupt caused by PLL lock:.
Bit 9: LSE clock security system interrupt enable Set and cleared by software to enable/disable interrupt caused by the clock security system on LSE..
Bit 10: HSI48 ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the internal HSI48 oscillator..
Clock interrupt flag register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
9/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HSI48RDYF
r |
LSECSSF
r |
CSSF
r |
PLLRDYF
r |
HSERDYF
r |
HSIRDYF
r |
MSIRDYF
r |
LSERDYF
r |
LSIRDYF
r |
Bit 0: LSI ready interrupt flag Set by hardware when the LSI clock becomes stable and LSIRDYDIE is set. Cleared by software setting the LSIRDYC bit..
Bit 1: LSE ready interrupt flag Set by hardware when the LSE clock becomes stable and LSERDYDIE is set. Cleared by software setting the LSERDYC bit..
Bit 2: MSI ready interrupt flag Set by hardware when the MSI clock becomes stable and MSIRDYDIE is set. Cleared by software setting the MSIRDYC bit..
Bit 3: HSI16 ready interrupt flag Set by hardware when the HSI16 clock becomes stable and HSIRDYIE is set in a response to setting the HSION (refer to Clock control register (RCC_CR)). When HSION is not set but the HSI16 oscillator is enabled by the peripheral through a clock request, this bit is not set and no interrupt is generated. Cleared by software setting the HSIRDYC bit..
Bit 4: HSE ready interrupt flag Set by hardware when the HSE clock becomes stable and HSERDYIE is set. Cleared by software setting the HSERDYC bit..
Bit 5: PLL ready interrupt flag Set by hardware when the PLL locks and PLLRDYIE is set. Cleared by software setting the PLLRDYC bit..
Bit 8: HSE clock security system interrupt flag Set by hardware when a failure is detected in the HSE oscillator. Cleared by software setting the CSSC bit..
Bit 9: LSE clock security system interrupt flag Set by hardware when a failure is detected in the LSE oscillator. Cleared by software by setting the LSECSSC bit..
Bit 10: HSI48 ready interrupt flag Set by hardware when the HSI48 clock becomes stable and HSI48RDYIE is set in a response to setting the HSI48ON (refer to RCC clock recovery RC register (RCC_CRRCR)). Cleared by software setting the HSI48RDYC bit..
Clock interrupt clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HSI48RDYC
w |
LSECSSC
w |
CSSC
w |
PLLRDYC
w |
HSERDYC
w |
HSIRDYC
w |
MSIRDYC
w |
LSERDYC
w |
LSIRDYC
w |
Bit 0: LSI ready interrupt clear This bit is set by software to clear the LSIRDYF flag..
Bit 1: LSE ready interrupt clear This bit is set by software to clear the LSERDYF flag..
Bit 2: MSI ready interrupt clear This bit is set by software to clear the MSIRDYF flag..
Bit 3: HSI16 ready interrupt clear This bit is set software to clear the HSIRDYF flag..
Bit 4: HSE ready interrupt clear This bit is set by software to clear the HSERDYF flag..
Bit 5: PLL ready interrupt clear This bit is set by software to clear the PLLRDYF flag..
Bit 8: Clock security system interrupt clear This bit is set by software to clear the HSECSSF flag..
Bit 9: LSE Clock security system interrupt clear This bit is set by software to clear the LSECSSF flag..
Bit 10: HSI48 oscillator ready interrupt clear This bit is set by software to clear the HSI48RDYF flag..
AHB peripheral reset register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSCRST
rw |
RNGRST
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CRCRST
rw |
FLASHRST
rw |
DMA2RST
rw |
DMA1RST
rw |
Bit 0: DMA1 and DMAMUX reset Set and cleared by software..
Bit 1: DMA2 and DMAMUX reset Set and cleared by software..
Bit 8: Flash memory interface reset Set and cleared by software. This bit can only be set when the flash memory is in power down mode..
Bit 12: CRC reset Set and cleared by software..
Bit 18: Random number generator reset Set and cleared by software..
Bit 24: Touch sensing controller reset Set and cleared by software..
I/O port reset register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPIOFRST
rw |
GPIOERST
rw |
GPIODRST
rw |
GPIOCRST
rw |
GPIOBRST
rw |
GPIOARST
rw |
Bit 0: I/O port A reset This bit is set and cleared by software..
Bit 1: I/O port B reset This bit is set and cleared by software..
Bit 2: I/O port C reset This bit is set and cleared by software..
Bit 3: I/O port D reset This bit is set and cleared by software..
Bit 4: I/O port E reset This bit is set and cleared by software..
Bit 5: I/O port F reset This bit is set and cleared by software..
APB peripheral reset register 1
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
0/25 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPTIM1RST
rw |
LPTIM2RST
rw |
DAC1RST
rw |
PWRRST
rw |
LPTIM3RST
rw |
I2C4RST
rw |
OPAMPRST
rw |
I2C3RST
rw |
I2C2RST
rw |
I2C1RST
rw |
LPUART1RST
rw |
USART4RST
rw |
USART3RST
rw |
USART2RST
rw |
CRSRST
rw |
|
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SPI3RST
rw |
SPI2RST
rw |
USBRST
rw |
LPUART3RST
rw |
LCDRST
rw |
LPUART2RST
rw |
TIM7RST
rw |
TIM6RST
rw |
TIM3RST
rw |
TIM2RST
rw |
Bit 0: TIM2 timer reset Set and cleared by software..
Bit 1: TIM3 timer reset Set and cleared by software..
Bit 4: TIM6 timer reset Set and cleared by software..
Bit 5: TIM7 timer reset Set and cleared by software..
Bit 7: LPUART2 reset Set and cleared by software..
Bit 9: LCD reset<sup>(1)</sup> Set and cleared by software..
Bit 12: LPUART3 reset<sup>(1)</sup> Set and cleared by software..
Bit 13: USB reset<sup>(1)</sup> Set and cleared by software..
Bit 14: SPI2 reset Set and cleared by software..
Bit 15: SPI3 reset<sup>(1)</sup> Set and cleared by software..
Bit 16: CRS reset<sup>(1)</sup> Set and cleared by software..
Bit 17: USART2 reset Set and cleared by software..
Bit 18: USART3 reset Set and cleared by software..
Bit 19: USART4 reset Set and cleared by software..
Bit 20: LPUART1 reset Set and cleared by software..
Bit 21: I2C1 reset Set and cleared by software..
Bit 22: I2C2 reset Set and cleared by software..
Bit 23: I2C3 reset Set and cleared by software..
Bit 24: OPAMP reset Set and cleared by software..
Bit 25: I2C4 reset<sup>(1)</sup> Set and cleared by software..
Bit 26: LPTIM3 reset Set and cleared by software..
Bit 28: Power interface reset Set and cleared by software..
Bit 29: DAC1 interface reset Set and cleared by software..
Bit 30: Low Power Timer 2 reset Set and cleared by software..
Bit 31: Low Power Timer 1 reset Set and cleared by software..
APB peripheral reset register 2
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCRST
rw |
TIM16RST
rw |
TIM15RST
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
USART1RST
rw |
SPI1RST
rw |
TIM1RST
rw |
SYSCFGRST
rw |
Bit 0: SYSCFG, COMP and VREFBUF reset Set and cleared by software..
Bit 11: TIM1 timer reset Set and cleared by software..
Bit 12: SPI1 reset Set and cleared by software..
Bit 14: USART1 reset Set and cleared by software..
Bit 16: TIM15 timer reset Set and cleared by software..
Bit 17: TIM16 timer reset Set and cleared by software..
Bit 20: ADC reset Set and cleared by software..
AHB peripheral clock enable register
Offset: 0x48, size: 32, reset: 0x00000100, access: Unspecified
0/6 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSCEN
rw |
RNGEN
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CRCEN
rw |
FLASHEN
rw |
DMA2EN
rw |
DMA1EN
rw |
Bit 0: DMA1 and DMAMUX clock enable Set and cleared by software. DMAMUX is enabled as long as at least one DMA peripheral is enabled..
Bit 1: DMA2 and DMAMUX clock enable Set and cleared by software. DMAMUX is enabled as long as at least one DMA peripheral is enabled..
Bit 8: Flash memory interface clock enable Set and cleared by software. This bit can only be cleared when the flash memory is in power down mode..
Bit 12: CRC clock enable Set and cleared by software..
Bit 18: Random number generator clock enable Set and cleared by software..
Bit 24: Touch sensing controller clock enable Set and cleared by software..
I/O port clock enable register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPIOFEN
rw |
GPIOEEN
rw |
GPIODEN
rw |
GPIOCEN
rw |
GPIOBEN
rw |
GPIOAEN
rw |
Bit 0: I/O port A clock enable This bit is set and cleared by software..
Bit 1: I/O port B clock enable This bit is set and cleared by software..
Bit 2: I/O port C clock enable This bit is set and cleared by software..
Bit 3: I/O port D clock enable This bit is set and cleared by software..
Bit 4: I/O port E clock enable<sup>(1)</sup> This bit is set and cleared by software..
Bit 5: I/O port F clock enable This bit is set and cleared by software..
Debug configuration register
Offset: 0x50, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
APB peripheral clock enable register 1
Offset: 0x58, size: 32, reset: 0x00000000, access: Unspecified
0/27 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPTIM1EN
rw |
LPTIM2EN
rw |
DAC1EN
rw |
PWREN
rw |
LPTIM3EN
rw |
I2C4EN
rw |
OPAMPEN
rw |
I2C3EN
rw |
I2C2EN
rw |
I2C1EN
rw |
LPUART1EN
rw |
USART4EN
rw |
USART3EN
rw |
USART2EN
rw |
CRSEN
rw |
|
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SPI3EN
rw |
SPI2EN
rw |
USBEN
rw |
LPUART3EN
rw |
WWDGEN
rw |
RTCAPBEN
rw |
LCDEN
rw |
LPUART2EN
rw |
TIM7EN
rw |
TIM6EN
rw |
TIM3EN
rw |
TIM2EN
rw |
Bit 0: TIM2 timer clock enable Set and cleared by software..
Bit 1: TIM3 timer clock enable Set and cleared by software..
Bit 4: TIM6 timer clock enable Set and cleared by software..
Bit 5: TIM7 timer clock enable Set and cleared by software..
Bit 7: LPUART2 clock enable Set and cleared by software..
Bit 9: LCD clock enable<sup>(1)</sup> Set and cleared by software..
Bit 10: RTC APB clock enable Set and cleared by software..
Bit 11: WWDG clock enable Set by software to enable the window watchdog clock. Cleared by hardware system reset This bit can also be set by hardware if the WWDG_SW option bit is 0..
Bit 12: LPUART3 clock enable Set and cleared by software..
Bit 13: USB clock enable<sup>(1)</sup> Set and cleared by software..
Bit 14: SPI2 clock enable Set and cleared by software..
Bit 15: SPI3 clock enable<sup>(1)</sup> Set and cleared by software..
Bit 16: CRS clock enable<sup>(1)</sup> Set and cleared by software..
Bit 17: USART2 clock enable Set and cleared by software..
Bit 18: USART3 clock enable Set and cleared by software..
Bit 19: USART4 clock enable Set and cleared by software..
Bit 20: LPUART1 clock enable Set and cleared by software..
Bit 21: I2C1 clock enable Set and cleared by software..
Bit 22: I2C2 clock enable Set and cleared by software..
Bit 23: I2C3 clock enable Set and cleared by software..
Bit 24: OPAMP clock enable Set and cleared by software..
Bit 25: I2C4EN clock enable<sup>(1)</sup> Set and cleared by software..
Bit 26: LPTIM3 clock enable Set and cleared by software..
Bit 28: Power interface clock enable Set and cleared by software..
Bit 29: DAC1 interface clock enable Set and cleared by software..
Bit 30: LPTIM2 clock enable Set and cleared by software..
Bit 31: LPTIM1 clock enable Set and cleared by software..
APB peripheral clock enable register 2
Offset: 0x60, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCEN
rw |
TIM16EN
rw |
TIM15EN
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
USART1EN
rw |
SPI1EN
rw |
TIM1EN
rw |
SYSCFGEN
rw |
Bit 0: SYSCFG, COMP and VREFBUF clock enable Set and cleared by software..
Bit 11: TIM1 timer clock enable Set and cleared by software..
Bit 12: SPI1 clock enable Set and cleared by software..
Bit 14: USART1 clock enable Set and cleared by software..
Bit 16: TIM15 timer clock enable Set and cleared by software..
Bit 17: TIM16 timer clock enable Set and cleared by software..
Bit 20: ADC clock enable Set and cleared by software..
AHB peripheral clock enable in Sleep/Stop mode register
Offset: 0x68, size: 32, reset: 0x01051303, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSCSMEN
rw |
RNGSMEN
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CRCSMEN
rw |
SRAMSMEN
rw |
FLASHSMEN
rw |
DMA2SMEN
rw |
DMA1SMEN
rw |
Bit 0: DMA1 and DMAMUX clock enable during Sleep mode Set and cleared by software. Clock to DMAMUX during Sleep mode is enabled as long as the clock in Sleep mode is enabled to at least one DMA peripheral..
Bit 1: DMA2 and DMAMUX clock enable during Sleep mode Set and cleared by software. Clock to DMAMUX during Sleep mode is enabled as long as the clock in Sleep mode is enabled to at least one DMA peripheral..
Bit 8: Flash memory interface clock enable during Sleep mode Set and cleared by software. This bit can be activated only when the flash memory is in power down mode..
Bit 9: SRAM clock enable during Sleep mode Set and cleared by software..
Bit 12: CRC clock enable during Sleep mode Set and cleared by software..
Bit 18: RNG clock enable during Sleep and Stop mode Set and cleared by software..
Bit 24: TSC clock enable during Sleep and Stop mode Set and cleared by software..
I/O port in Sleep mode clock enable register
Offset: 0x6c, size: 32, reset: 0x0000003F, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPIOFSMEN
rw |
GPIOESMEN
rw |
GPIODSMEN
rw |
GPIOCSMEN
rw |
GPIOBSMEN
rw |
GPIOASMEN
rw |
Bit 0: I/O port A clock enable during Sleep mode Set and cleared by software..
Bit 1: I/O port B clock enable during Sleep mode Set and cleared by software..
Bit 2: I/O port C clock enable during Sleep mode Set and cleared by software..
Bit 3: I/O port D clock enable during Sleep mode<sup>(1)</sup> Set and cleared by software..
Bit 4: I/O port E clock enable during Sleep mode Set and cleared by software..
Bit 5: I/O port F clock enable during Sleep mode Set and cleared by software..
APB peripheral clock enable in Sleep/Stop mode register 1
Offset: 0x78, size: 32, reset: 0xFF7E4C33, access: Unspecified
0/27 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPTIM1SMEN
rw |
LPTIM2SMEN
rw |
DAC1SMEN
rw |
PWRSMEN
rw |
LPTIM3SMEN
rw |
I2C4SMEN
rw |
OPAMPSMEN
rw |
I2C3SMEN
rw |
I2C2SMEN
rw |
I2C1SMEN
rw |
LPUART1SMEN
rw |
USART4SMEN
rw |
USART3SMEN
rw |
USART2SMEN
rw |
CRSSMEN
rw |
|
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SPI3SMEN
rw |
SPI2SMEN
rw |
USBSMEN
rw |
LPUART3SMEN
rw |
WWDGSMEN
rw |
RTCAPBSMEN
rw |
LCDSMEN
rw |
LPUART2SMEN
rw |
TIM7SMEN
rw |
TIM6SMEN
rw |
TIM3SMEN
rw |
TIM2SMEN
rw |
Bit 0: TIM2 timer clock enable during Sleep mode Set and cleared by software..
Bit 1: TIM3 timer clock enable during Sleep mode Set and cleared by software..
Bit 4: TIM6 timer clock enable during Sleep mode Set and cleared by software..
Bit 5: TIM7 timer clock enable during Sleep mode Set and cleared by software..
Bit 7: LPUART2 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 9: LCD clock enable during Sleep mode<sup>(1)</sup> Set and cleared by software..
Bit 10: RTC APB clock enable during Sleep mode Set and cleared by software..
Bit 11: WWDG clock enable during Sleep and Stop modes Set and cleared by software..
Bit 12: LPUART3 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 13: USB clock enable during Sleep mode<sup>(1)</sup> Set and cleared by software..
Bit 14: SPI2 clock enable during Sleep mode Set and cleared by software..
Bit 15: SPI3 clock enable during Sleep mode<sup>(1)</sup> Set and cleared by software..
Bit 16: CRS clock enable during Sleep and Stop modes<sup>(1)</sup> Set and cleared by software..
Bit 17: USART2 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 18: USART3 clock enable during Sleep mode Set and cleared by software..
Bit 19: USART4 clock enable during Sleep mode Set and cleared by software..
Bit 20: LPUART1 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 21: I2C1 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 22: I2C2 clock enable during Sleep mode Set and cleared by software..
Bit 23: I2C3 clock enable during Sleep mode Set and cleared by software..
Bit 24: OPAMP clock enable during Sleep and Stop modes Set and cleared by software..
Bit 25: I2C4 clock enable during Sleep mode<sup>(1)</sup> Set and cleared by software..
Bit 26: Low power timer 3 clock enable during Sleep mode Set and cleared by software..
Bit 28: Power interface clock enable during Sleep mode Set and cleared by software..
Bit 29: DAC1 interface clock enable during Sleep and Stop modes Set and cleared by software..
Bit 30: Low Power Timer 2 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 31: Low Power Timer 1 clock enable during Sleep and Stop modes Set and cleared by software..
APB peripheral clock enable in Sleep/Stop mode register 2
Offset: 0x80, size: 32, reset: 0x0017D801, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCSMEN
rw |
TIM16SMEN
rw |
TIM15SMEN
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
USART1SMEN
rw |
SPI1SMEN
rw |
TIM1SMEN
rw |
SYSCFGSMEN
rw |
Bit 0: SYSCFG, COMP and VREFBUF clock enable during Sleep and Stop modes Set and cleared by software..
Bit 11: TIM1 timer clock enable during Sleep mode Set and cleared by software..
Bit 12: SPI1 clock enable during Sleep mode Set and cleared by software..
Bit 14: USART1 clock enable during Sleep and Stop modes Set and cleared by software..
Bit 16: TIM15 timer clock enable during Sleep mode Set and cleared by software..
Bit 17: TIM16 timer clock enable during Sleep mode Set and cleared by software..
Bit 20: ADC clock enable during Sleep mode Set and cleared by software..
Peripherals independent clock configuration register
Offset: 0x88, size: 32, reset: 0x00000000, access: Unspecified
0/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCSEL
rw |
CLK48SEL
rw |
TIM15SEL
rw |
TIM1SEL
rw |
LPTIM3SEL
rw |
LPTIM2SEL
rw |
LPTIM1SEL
rw |
I2C3SEL
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
I2C1SEL
rw |
LPUART1SEL
rw |
LPUART2SEL
rw |
LPUART3SEL
rw |
USART2SEL
rw |
USART1SEL
rw |
Bits 0-1: USART1 clock source selection This bitfield is controlled by software to select USART1 clock source as follows:.
Bits 2-3: USART2 clock source selection This bitfield is controlled by software to select USART2 clock source as follows:.
Bits 6-7: LPUART3 clock source selection<sup>(1)</sup> This bitfield is controlled by software to select LPUART3 clock source as follows:.
Bits 8-9: LPUART2 clock source selection This bitfield is controlled by software to select LPUART2 clock source as follows:.
Bits 10-11: LPUART1 clock source selection This bitfield is controlled by software to select LPUART1 clock source as follows:.
Bits 12-13: I2C1 clock source selection This bitfield is controlled by software to select I2C1 clock source as follows:.
Bits 16-17: I2C3 clock source selection This bitfield is controlled by software to select I2C3 clock source as follows:.
Bits 18-19: LPTIM1 clock source selection This bitfield is controlled by software to select LPTIM1 clock source as follows:.
Bits 20-21: LPTIM2 clock source selection This bitfield is controlled by software to select LPTIM2 clock source as follows:.
Bits 22-23: LPTIM3 clock source selection This bitfield is controlled by software to select LPTIM3 clock source as follows:.
Bit 24: TIM1 clock source selection This bit is set and cleared by software. It selects TIM1 clock source as follows:.
Bit 25: TIM15 clock source selection This bit is set and cleared by software. It selects TIM15 clock source as follows:.
Bits 26-27: 481MHz clock source selection This bitfield is controlled by software to select the 481MHz clock source used by the USB FS and the RNG:.
Bits 28-29: ADCs clock source selection This bitfield is controlled by software to select the clock source for ADC:.
RTC domain control register
Offset: 0x90, size: 32, reset: 0x00000000, access: Unspecified
3/13 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSCOSEL
rw |
LSCOEN
rw |
BDRST
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RTCEN
rw |
LSESYSRDY
r |
RTCSEL
rw |
LSESYSEN
rw |
LSECSSD
r |
LSECSSON
rw |
LSEDRV
rw |
LSEBYP
rw |
LSERDY
r |
LSEON
rw |
Bit 0: LSE oscillator enable Set and cleared by software to enable LSE oscillator:.
Bit 1: LSE oscillator ready Set and cleared by hardware to indicate when the external 321kHz oscillator is ready (stable): After the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles..
Bit 2: LSE oscillator bypass Set and cleared by software to bypass the LSE oscillator (in debug mode). This bit can be written only when the external 321kHz oscillator is disabled (LSEON=0 and LSERDY=0)..
Bits 3-4: LSE oscillator drive capability Set by software to select the LSE oscillator drive capability as follows: Applicable when the LSE oscillator is in Xtal mode, as opposed to bypass mode..
Bit 5: CSS on LSE enable Set by software to enable the clock security system on LSE (321kHz) oscillator as follows: LSECSSON must be enabled after the LSE oscillator is enabled (LSEON bit enabled) and ready (LSERDY flag set by hardware), and after the RTCSEL bit is selected. Once enabled, this bit cannot be disabled, except after a LSE failure detection (LSECSSD =1). In that case the software must disable the LSECSSON bit..
Bit 6: CSS on LSE failure Detection Set by hardware to indicate when a failure is detected by the clock security system on the external 321kHz oscillator (LSE):.
Bit 7: LSE clock enable for system usage This bit must be set by software to enable the LSE clock for a system usage..
Bits 8-9: RTC clock source selection Set by software to select the clock source for the RTC as follows: Once the RTC clock source is selected, it cannot be changed anymore unless the RTC domain is reset, or unless a failure is detected on LSE (LSECSSD is set). The BDRST bit can be used to reset this bitfield to 00..
Bit 11: LSE clock ready for system usage This flag is set by hardware to indicate that the LSE clock is ready for being used by the system (see LSESYSEN bit). This flag is set when LSE clock is ready (LSEON1=11 and LSERDY1=11) and two LSE clock cycles after that LSESYSEN is set. Cleared by hardware to indicate that the LSE clock is not ready to be used by the system..
Bit 15: RTC clock enable Set and cleared by software. The bit enables clock to RTC and TAMP..
Bit 16: RTC domain software reset Set and cleared by software to reset the RTC domain:.
Bit 24: Low-speed clock output (LSCO) enable Set and cleared by software..
Bit 25: Low-speed clock output selection Set and cleared by software to select the low-speed output clock:.
Control/status register
Offset: 0x94, size: 32, reset: 0x00000000, access: Unspecified
8/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPWRRSTF
r |
WWDGRSTF
r |
IWDGRSTF
r |
SFTRSTF
r |
PWRRSTF
r |
PINRSTF
r |
OBLRSTF
r |
RMVF
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MSISRANGE
rw |
LSIPREDIV
rw |
LSIRDY
r |
LSION
rw |
Bit 0: LSI oscillator enable Set and cleared by software to enable/disable the LSI oscillator:.
Bit 1: LSI oscillator ready Set and cleared by hardware to indicate when the LSI oscillator is ready (stable): After the LSION bit is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles. This bit can be set even if LSION = 0 if the LSI is requested by the Clock Security System on LSE, by the Independent Watchdog or by the RTC..
Bit 2: Internal low-speed oscillator pre-divided by 128 Set and reset by hardware to indicate when the low-speed internal RC oscillator has to be divided by 128. The software has to switch off the LSI before changing this bit..
Bits 8-11: MSI range after Standby mode Set by software to chose the MSI frequency at startup. This range is used after exiting Standby mode until MSIRGSEL is set. After a pad or a power-on reset, the range is always 41MHz. MSISRANGE[3:0] can be written only when MSIRGSEL1=11. Others: Reserved Note: Changing the MSISRANGE[3:0] does not change the current MSI frequency..
Bit 23: Remove reset flags Set by software to clear the reset flags..
Bit 25: Option byte loader reset flag Set by hardware when a reset from the Option byte loading occurs. Cleared by setting the RMVF bit..
Bit 26: Pin reset flag Set by hardware when a reset from the NRST pin occurs. Cleared by setting the RMVF bit..
Bit 27: BOR or POR/PDR flag Set by hardware when a BOR or POR/PDR occurs. Cleared by setting the RMVF bit..
Bit 28: Software reset flag Set by hardware when a software reset occurs. Cleared by setting the RMVF bit..
Bit 29: Independent window watchdog reset flag Set by hardware when an independent watchdog reset domain occurs. Cleared by setting the RMVF bit..
Bit 30: Window watchdog reset flag Set by hardware when a window watchdog reset occurs. Cleared by setting the RMVF bit..
Bit 31: Low-power reset flag Set by hardware when a reset occurs due to illegal Stop, Standby, or Shutdown mode entry. Cleared by setting the RMVF bit. This operates only if nRST_STOP, nRST_STDBY or nRST_SHDW option bits are cleared..
RCC clock recovery RC register
Offset: 0x98, size: 32, reset: 0x00008800, access: Unspecified
2/3 fields covered.
Bit 0: HSI48 RC oscillator enable<sup>(1)</sup>.
Bit 1: HSI48 clock ready flag<sup>(1)</sup> The flag is set when the HSI48 clock is ready for use..
Bits 7-15: HSI48 clock calibration These bits are initialized at startup with the factory-programmed HSI48 calibration trim value..
0x40025000: RNG address block description
4/18 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | RNG_CR | ||||||||||||||||||||||||||||||||
0x4 | RNG_SR | ||||||||||||||||||||||||||||||||
0x8 | RNG_DR | ||||||||||||||||||||||||||||||||
0x10 | RNG_HTCR |
RNG control register
Offset: 0x0, size: 32, reset: 0x00800D00, access: Unspecified
0/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CONFIGLOCK
rw |
CONDRST
rw |
RNG_CONFIG1
rw |
CLKDIV
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RNG_CONFIG2
rw |
NISTC
rw |
RNG_CONFIG3
rw |
ARDIS
rw |
CED
rw |
IE
rw |
RNGEN
rw |
Bit 2: True random number generator enable.
Bit 3: Interrupt enable.
Bit 5: Clock error detection The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is enabled, that is to enable or disable CED, the RNG must be disabled. Writing this bit is taken into account only if the CONDRST bit is set to 1 in the same access, while CONFIGLOCK remains at 0. Writing to this bit is ignored if CONFIGLOCK1=11..
Bit 7: Auto reset disable When auto-reset is enabled the application still need to clear the SEIS bit after a noise source error. Writing this bit is taken into account only if CONDRST bit is set to 1 in the same access, while CONFIGLOCK remains at 0. Writing to this bit is ignored if CONFIGLOCK1=11..
Bits 8-11: RNG configuration 3 Reserved to the RNG configuration (bitfield 3). Refer to RNG_CONFIG1 bitfield for details. If the NISTC bit is cleared in this register RNG_CONFIG3 bitfield values are ignored by RNG..
Bit 12: NIST custom two conditioning loops are performed and 256 bits of noise source are used. Writing this bit is taken into account only if CONDRST bit is set to 1 in the same access, while CONFIGLOCK remains at 0. Writing to this bit is ignored if CONFIGLOCK1=11..
Bits 13-15: RNG configuration 2 Reserved to the RNG configuration (bitfield 2). Bit 13 can be set when RNG power consumption is critical. See Section120.3.8: RNG low-power use. Refer to the RNG_CONFIG1 bitfield for details..
Bits 16-19: Clock divider factor This value used to configure an internal programmable divider (from 1 to 16) acting on the incoming RNG clock. These bits can be written only when the core is disabled (RNGEN1=10). ... Writing these bits is taken into account only if the CONDRST bit is set to 1 in the same access, while CONFIGLOCK remains at 0. Writing to this bit is ignored if CONFIGLOCK1=11..
Bits 20-25: RNG configuration 1 Reserved to the RNG configuration (bitfield 1). Must be initialized using the recommended value documented in Section120.6: RNG entropy source validation. Writing any bit of RNG_CONFIG1 is taken into account only if the CONDRST bit is set to 1 in the same access, while CONFIGLOCK remains at 0. Writing to this bit is ignored if CONFIGLOCK1=11..
Bit 30: Conditioning soft reset Write 1 and then write 0 to reset the conditioning logic, clear all the FIFOs and start a new RNG initialization process, with RNG_SR cleared. Registers RNG_CR and RNG_HTCR are not changed by CONDRST. This bit must be set to 1 in the same access that set any configuration bits [29:4]. In other words, when CONDRST bit is set to 1 correct configuration in bits [29:4] must also be written. When CONDRST is set to 0 by the software, its value goes to 0 when the reset process is done. It takes about 2 AHB clock cycles + 2 RNG clock cycles..
Bit 31: RNG Config lock This bitfield is set once: if this bit is set it can only be reset to 0 if RNG is reset..
RNG status register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
3/5 fields covered.
Bit 0: Data ready Once the output buffer becomes empty (after reading the RNG_DR register), this bit returns to 0 until a new random value is generated. Note: The DRDY bit can rise when the peripheral is disabled (RNGEN1=10 in the RNG_CR register). If IE=1 in the RNG_CR register, an interrupt is generated when DRDY1=11..
Bit 1: Clock error current status Note: CECS bit is valid only if the CED bit in the RNG_CR register is set to 0..
Bit 2: Seed error current status Runtime repetition count test failed (noise source has provided more than 24 consecutive bits at a constant value 0 or 1, or more than 32 consecutive occurrence of two bits patterns 01 or 10) Startup or continuous adaptive proportion test on noise source failed. Startup post-processing/conditioning sanity check failed..
Bit 5: Clock error interrupt status This bit is set at the same time as CECS. It is cleared by writing 0. Writing 1 has no effect. An interrupt is pending if IE = 1 in the RNG_CR register..
Bit 6: Seed error interrupt status This bit is set at the same time as SECS. It is cleared by writing 0 (unless CONDRST is used). Writing 1 has no effect. An interrupt is pending if IE = 1 in the RNG_CR register..
RNG data register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RNDATA
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RNDATA
r |
Bits 0-31: Random data 32-bit random data, which are valid when DRDY1=11. When DRDY1=10, the RNDATA value is1zero. When DRDY is set, it is recommended to always verify that RNG_DR is different from zero. Because when it is the case a seed error occurred between RNG_SR polling and RND_DR output reading (rare event)..
RNG health test control register
Offset: 0x10, size: 32, reset: 0x000072AC, access: Unspecified
0/1 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HTCFG
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
HTCFG
rw |
Bits 0-31: health test configuration This configuration is used by RNG to configure the health tests. See Section120.6: RNG entropy source validation for the recommended value. Note: The RNG behavior, including the read to this register, is not guaranteed if a different value from the recommended value is written..
0x40002800: RTC register block
33/135 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | RTC_TR | ||||||||||||||||||||||||||||||||
0x4 | RTC_DR | ||||||||||||||||||||||||||||||||
0x8 | RTC_SSR | ||||||||||||||||||||||||||||||||
0xc | RTC_ICSR | ||||||||||||||||||||||||||||||||
0x10 | RTC_PRER | ||||||||||||||||||||||||||||||||
0x14 | RTC_WUTR | ||||||||||||||||||||||||||||||||
0x18 | RTC_CR | ||||||||||||||||||||||||||||||||
0x24 | RTC_WPR | ||||||||||||||||||||||||||||||||
0x28 | RTC_CALR | ||||||||||||||||||||||||||||||||
0x2c | RTC_SHIFTR | ||||||||||||||||||||||||||||||||
0x30 | RTC_TSTR | ||||||||||||||||||||||||||||||||
0x34 | RTC_TSDR | ||||||||||||||||||||||||||||||||
0x38 | RTC_TSSSR | ||||||||||||||||||||||||||||||||
0x40 | RTC_ALRMAR | ||||||||||||||||||||||||||||||||
0x44 | RTC_ALRMASSR | ||||||||||||||||||||||||||||||||
0x48 | RTC_ALRMBR | ||||||||||||||||||||||||||||||||
0x4c | RTC_ALRMBSSR | ||||||||||||||||||||||||||||||||
0x50 | RTC_SR | ||||||||||||||||||||||||||||||||
0x54 | RTC_MISR | ||||||||||||||||||||||||||||||||
0x5c | RTC_SCR | ||||||||||||||||||||||||||||||||
0x70 | RTC_ALRABINR | ||||||||||||||||||||||||||||||||
0x74 | RTC_ALRBBINR |
RTC time register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
RTC date register
Offset: 0x4, size: 32, reset: 0x00002101, access: Unspecified
0/7 fields covered.
RTC subsecond register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
Bits 0-31: Synchronous binary counter SS[31:16]: Synchronous binary counter MSB values When Binary or Mixed mode is selected (BIN = 01 or 10 or 11): SS[31:16] are the 16 MSB of the SS[31:0] free-running down-counter. When BCD mode is selected (BIN=00): SS[31:16] are forced by hardware to 0x0000. SS[15:0]: Subsecond value/synchronous binary counter LSB values When Binary mode is selected (BIN = 01 or 10 or 11): SS[15:0] are the 16 LSB of the SS[31:0] free-running down-counter. When BCD mode is selected (BIN=00): SS[15:0] is the value in the synchronous prescaler counter. The fraction of a second is given by the formula below: Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1) SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR..
RTC initialization control and status register
Offset: 0xc, size: 32, reset: 0x00000007, access: Unspecified
5/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RECALPF
r |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BCDU
rw |
BIN
rw |
INIT
rw |
INITF
r |
RSF
rw |
INITS
r |
SHPF
r |
WUTWF
r |
Bit 2: Wake-up timer write flag This bit is set by hardware when WUT value can be changed, after the WUTE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode..
Bit 3: Shift operation pending This flag is set by hardware as soon as a shift operation is initiated by a write to the RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has been executed. Writing to the SHPF bit has no effect..
Bit 4: Initialization status flag This bit is set by hardware when the calendar year field is different from 0 (Backup domain reset state)..
Bit 5: Registers synchronization flag This bit is set by hardware each time the calendar registers are copied into the shadow registers (RTC_SSR, RTC_TR and RTC_DR). This bit is cleared by hardware in initialization mode, while a shift operation is pending (SHPF = 1), or when in bypass shadow register mode (BYPSHAD = 1). This bit can also be cleared by software. It is cleared either by software or by hardware in initialization mode..
Bit 6: Initialization flag When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler registers can be updated..
Bit 7: Initialization mode.
Bits 8-9: Binary mode.
Bits 10-12: BCD update (BIN = 10 or 11) In mixed mode when both BCD calendar and binary extended counter are used (BIN = 10 or 11), the calendar second is incremented using the SSR Least Significant Bits..
Bit 16: Recalibration pending Flag The RECALPF status flag is automatically set to 1 when software writes to the RTC_CALR register, indicating that the RTC_CALR register is blocked. When the new calibration settings are taken into account, this bit returns to 0. Refer to Re-calibration on-the-fly..
RTC prescaler register
Offset: 0x10, size: 32, reset: 0x007F00FF, access: Unspecified
0/2 fields covered.
RTC wake-up timer register
Offset: 0x14, size: 32, reset: 0x0000FFFF, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUTOCLR
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
WUT
rw |
Bits 0-15: Wake-up auto-reload value bits When the wake-up timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]1+11) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the RTC_CR register. When WUCKSEL[2] = 1, the wake-up timer becomes 17-bits and WUCKSEL[1] effectively becomes WUT[16] the most-significant bit to be reloaded into the timer. The first assertion of WUTF occurs between WUT and (WUT + 2) ck_wut cycles after WUTE is set. Setting WUT[15:0] to 0x0000 with WUCKSEL[2:0] = 011 (RTCCLK/2) is forbidden..
Bits 16-31: Wake-up auto-reload output clear value When WUTOCLR[15:0] is different from 0x0000, WUTF is set by hardware when the auto-reload down-counter reaches 0 and is cleared by hardware when the auto-reload downcounter reaches WUTOCLR[15:0]. When WUTOCLR[15:0] = 0x0000, WUTF is set by hardware when the WUT down-counter reaches 0 and is cleared by software..
RTC control register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/29 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OUT2EN
rw |
TAMPALRM_TYPE
rw |
TAMPALRM_PU
rw |
ALRBFCLR
rw |
ALRAFCLR
rw |
TAMPOE
rw |
TAMPTS
rw |
ITSE
rw |
COE
rw |
OSEL
rw |
POL
rw |
COSEL
rw |
BKP
rw |
SUB1H
w |
ADD1H
w |
|
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TSIE
rw |
WUTIE
rw |
ALRBIE
rw |
ALRAIE
rw |
TSE
rw |
WUTE
rw |
ALRBE
rw |
ALRAE
rw |
SSRUIE
rw |
FMT
rw |
BYPSHAD
rw |
REFCKON
rw |
TSEDGE
rw |
WUCKSEL
rw |
Bits 0-2: ck_wut wake-up clock selection 10x: ck_spre (usually 11Hz) clock is selected in BCD mode. In binary or mixed mode, this is the clock selected by BCDU. 11x: ck_spre (usually 1 Hz) clock is selected in BCD mode. In binary or mixed mode, this is the clock selected by BCDU. Furthermore, 2<sup>16</sup> is added to the WUT counter value..
Bit 3: Timestamp event active edge TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting..
Bit 4: RTC_REFIN reference clock detection enable (50 or 601Hz) Note: BIN must be 0x00 and PREDIV_S must be 0x00FF..
Bit 5: Bypass the shadow registers Note: If the frequency of the APB clock is less than seven times the frequency of RTCCLK, BYPSHAD must be set to 1..
Bit 6: Hour format.
Bit 7: SSR underflow interrupt enable.
Bit 8: Alarm A enable.
Bit 9: Alarm B enable.
Bit 10: Wake-up timer enable Note: When the wake-up timer is disabled, wait for WUTWF = 1 before enabling it again..
Bit 11: timestamp enable.
Bit 12: Alarm A interrupt enable.
Bit 13: Alarm B interrupt enable.
Bit 14: Wake-up timer interrupt enable.
Bit 15: Timestamp interrupt enable.
Bit 16: Add 1 hour (summer time change) When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit is always read as 0..
Bit 17: Subtract 1 hour (winter time change) When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the current hour is not 0. This bit is always read as 0. Setting this bit has no effect when current hour is 0..
Bit 18: Backup This bit can be written by the user to memorize whether the daylight saving time change has been performed or not..
Bit 19: Calibration output selection When COE = 1, this bit selects which signal is output on CALIB. These frequencies are valid for RTCCLK at 32.7681kHz and prescalers at their default values (PREDIV_A = 127 and PREDIV_S = 255). Refer to Section128.3.16: Calibration clock output..
Bit 20: Output polarity This bit is used to configure the polarity of TAMPALRM output..
Bits 21-22: Output selection These bits are used to select the flag to be routed to TAMPALRM output..
Bit 23: Calibration output enable This bit enables the CALIB output.
Bit 24: timestamp on internal event enable.
Bit 25: Activate timestamp on tamper detection event TAMPTS is valid even if TSE = 0 in the RTC_CR register. Timestamp flag is set up to 3 ck_apre cycles after the tamper flags. Note: TAMPTS must be cleared before entering RTC initialization mode..
Bit 26: Tamper detection output enable on TAMPALRM.
Bit 27: Alarm A flag automatic clear.
Bit 28: Alarm B flag automatic clear.
Bit 29: TAMPALRM pull-up enable.
Bit 30: TAMPALRM output type.
Bit 31: RTC_OUT2 output enable.
RTC write protection register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KEY
w |
RTC calibration register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bits 0-8: Calibration minus The frequency of the calendar is reduced by masking CALM out of 2<sup>20</sup> RTCCLK pulses (321seconds if the input frequency is 327681Hz). This decreases the frequency of the calendar with a resolution of 0.95371ppm. To increase the frequency of the calendar, this feature should be used in conjunction with CALP. See Section128.3.14: RTC smooth digital calibration on page1733..
Bit 12: RTC low-power mode.
Bit 13: Use a 16-second calibration cycle period When CALW16 is set to 1, the 16-second calibration cycle period is selected. This bit must not be set to 1 if CALW8 = 1. Note: CALM[0] is stuck at 0 when CALW16 = 1. Refer to Section128.3.14: RTC smooth digital calibration..
Bit 14: Use an 8-second calibration cycle period When CALW8 is set to 1, the 8-second calibration cycle period is selected. Note: CALM[1:0] are stuck at 00 when CALW8 = 1. Refer to Section128.3.14: RTC smooth digital calibration..
Bit 15: Increase frequency of RTC by 488.51ppm..
RTC shift control register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD1S
w |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SUBFS
w |
Bits 0-14: Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF = 1, in RTC_ICSR). The value which is written to SUBFS is added to the synchronous prescaler counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / (PREDIV_S + 1) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))). In mixed BCD-binary mode (BIN=10 or 11), the SUBFS[14:BCDU+8] must be written with 0. Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF = 1 to be sure that the shadow registers have been updated with the shifted time..
Bit 31: Add one second This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF = 1, in RTC_ICSR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation..
RTC timestamp time register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
7/7 fields covered.
RTC timestamp date register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
5/5 fields covered.
RTC timestamp subsecond register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
RTC alarm A register
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
0/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSK4
rw |
WDSEL
rw |
DT
rw |
DU
rw |
MSK3
rw |
PM
rw |
HT
rw |
HU
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MSK2
rw |
MNT
rw |
MNU
rw |
MSK1
rw |
ST
rw |
SU
rw |
Bits 0-3: Second units in BCD format..
Bits 4-6: Second tens in BCD format..
Bit 7: Alarm A seconds mask.
Bits 8-11: Minute units in BCD format.
Bits 12-14: Minute tens in BCD format.
Bit 15: Alarm A minutes mask.
Bits 16-19: Hour units in BCD format.
Bits 20-21: Hour tens in BCD format.
Bit 22: AM/PM notation.
Bit 23: Alarm A hours mask.
Bits 24-27: Date units or day in BCD format.
Bits 28-29: Date tens in BCD format.
Bit 30: Week day selection.
Bit 31: Alarm A date mask.
RTC alarm A subsecond register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSCLR
rw |
MASKSS
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SS
rw |
Bits 0-14: Subseconds value This value is compared with the contents of the synchronous prescaler counter to determine if alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. This field is the mirror of SS[14:0] in the RTC_ALRABINR, and so can also be read or written through RTC_ALRABINR..
Bits 24-29: Mask the most-significant bits starting at this bit ... From 32 to 63: All 32 SS bits are compared and must match to activate alarm. Note: In BCD mode (BIN=00) the overflow bits of the synchronous counter (bits 31:15) are never compared. These bits can be different from 0 only after a shift operation..
Bit 31: Clear synchronous counter on alarm (Binary mode only) Note: SSCLR must be kept to 0 when BCD or mixed mode is used (BIN = 00, 10 or 11)..
RTC alarm B register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
0/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSK4
rw |
WDSEL
rw |
DT
rw |
DU
rw |
MSK3
rw |
PM
rw |
HT
rw |
HU
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MSK2
rw |
MNT
rw |
MNU
rw |
MSK1
rw |
ST
rw |
SU
rw |
Bits 0-3: Second units in BCD format.
Bits 4-6: Second tens in BCD format.
Bit 7: Alarm B seconds mask.
Bits 8-11: Minute units in BCD format.
Bits 12-14: Minute tens in BCD format.
Bit 15: Alarm B minutes mask.
Bits 16-19: Hour units in BCD format.
Bits 20-21: Hour tens in BCD format.
Bit 22: AM/PM notation.
Bit 23: Alarm B hours mask.
Bits 24-27: Date units or day in BCD format.
Bits 28-29: Date tens in BCD format.
Bit 30: Week day selection.
Bit 31: Alarm B date mask.
RTC alarm B subsecond register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/3 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSCLR
rw |
MASKSS
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SS
rw |
Bits 0-14: Subseconds value This value is compared with the contents of the synchronous prescaler counter to determine if alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared. This field is the mirror of SS[14:0] in the RTC_ALRBBINR, and so can also be read or written through RTC_ALRBBINR..
Bits 24-29: Mask the most-significant bits starting at this bit ... From 32 to 63: All 32 SS bits are compared and must match to activate alarm. Note: In BCD mode (BIN=00)The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation..
Bit 31: Clear synchronous counter on alarm (Binary mode only) Note: SSCLR must be kept to 0 when BCD or mixed mode is used (BIN = 00, 10 or 11)..
RTC status register
Offset: 0x50, size: 32, reset: 0x00000000, access: Unspecified
7/7 fields covered.
Bit 0: Alarm A flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the alarm A register (RTC_ALRMAR)..
Bit 1: Alarm B flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the alarm B register (RTC_ALRMBR)..
Bit 2: Wake-up timer flag This flag is set by hardware when the wake-up auto-reload counter reaches 0. If WUTOCLR[15:0] is different from 0x0000, WUTF is cleared by hardware when the wake-up auto-reload counter reaches WUTOCLR value. If WUTOCLR[15:0] is 0x0000, WUTF must be cleared by software. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again..
Bit 3: Timestamp flag This flag is set by hardware when a timestamp event occurs. If ITSF flag is set, TSF must be cleared together with ITSF. Note: TSF is not set if TAMPTS1=11 and the tamper flag is read during the 3 ck_apre cycles following tamper event. Refer to Timestamp on tamper event for more details..
Bit 4: Timestamp overflow flag This flag is set by hardware when a timestamp event occurs while TSF is already set. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared..
Bit 5: Internal timestamp flag This flag is set by hardware when a timestamp on the internal event occurs..
Bit 6: SSR underflow flag This flag is set by hardware when the SSR rolls under 0. SSRUF is not set when SSCLR=1..
RTC masked interrupt status register
Offset: 0x54, size: 32, reset: 0x00000000, access: Unspecified
7/7 fields covered.
Bit 0: Alarm A masked flag This flag is set by hardware when the alarm A interrupt occurs..
Bit 1: Alarm B masked flag This flag is set by hardware when the alarm B interrupt occurs..
Bit 2: Wake-up timer masked flag This flag is set by hardware when the wake-up timer interrupt occurs. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again..
Bit 3: Timestamp masked flag This flag is set by hardware when a timestamp interrupt occurs. If ITSF flag is set, TSF must be cleared together with ITSF..
Bit 4: Timestamp overflow masked flag This flag is set by hardware when a timestamp interrupt occurs while TSMF is already set. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared..
Bit 5: Internal timestamp masked flag This flag is set by hardware when a timestamp on the internal event occurs and timestampinterrupt is raised..
Bit 6: SSR underflow masked flag This flag is set by hardware when the SSR underflow interrupt occurs..
RTC status clear register
Offset: 0x5c, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
Bit 0: Clear alarm A flag Writing 1 in this bit clears the ALRAF bit in the RTC_SR register..
Bit 1: Clear alarm B flag Writing 1 in this bit clears the ALRBF bit in the RTC_SR register..
Bit 2: Clear wake-up timer flag Writing 1 in this bit clears the WUTF bit in the RTC_SR register..
Bit 3: Clear timestamp flag Writing 1 in this bit clears the TSF bit in the RTC_SR register. If ITSF flag is set, TSF must be cleared together with ITSF by setting CRSF and CITSF..
Bit 4: Clear timestamp overflow flag Writing 1 in this bit clears the TSOVF bit in the RTC_SR register. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared..
Bit 5: Clear internal timestamp flag Writing 1 in this bit clears the ITSF bit in the RTC_SR register..
Bit 6: Clear SSR underflow flag Writing 1 in this bit clears the SSRUF in the RTC_SR register..
RTC alarm A binary mode register
Offset: 0x70, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Synchronous counter alarm value in Binary mode This value is compared with the contents of the synchronous counter to determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. SS[14:0] is the mirror of SS[14:0] in the RTC_ALRMASSRR, and so can also be read or written through RTC_ALRMASSR..
RTC alarm B binary mode register
Offset: 0x74, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: Synchronous counter alarm value in Binary mode This value is compared with the contents of the synchronous counter to determine if Alarm Bis to be activated. Only bits 0 up MASKSS-1 are compared. SS[14:0] is the mirror of SS[14:0] in the RTC_ALRMBSSRR, and so can also be read or written through RTC_ALRMBSSR..
0x40013000: SPI address block description
10/39 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | SPI_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | SPI_CR2 | ||||||||||||||||||||||||||||||||
0x8 (16-bit) | SPI_SR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | SPI_DR | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | SPI_CRCPR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | SPI_RXCRCR | ||||||||||||||||||||||||||||||||
0x18 (16-bit) | SPI_TXCRCR |
SPI control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/14 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BIDIMODE
rw |
BIDIOE
rw |
CRCEN
rw |
CRCNEXT
rw |
CRCL
rw |
RXONLY
rw |
SSM
rw |
SSI
rw |
LSBFIRST
rw |
SPE
rw |
BR
rw |
MSTR
rw |
CPOL
rw |
CPHA
rw |
Bit 0: Clock phase Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 1: Clock polarity Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 2: Master selection Note: This bit should not be changed when communication is ongoing..
Bits 3-5: Baud rate control Note: These bits should not be changed when communication is ongoing..
Bit 6: SPI enable Note: When disabling the SPI, follow the procedure described in Procedure for disabling the SPI on page1954..
Bit 7: Frame format Note: 1. This bit should not be changed when communication is ongoing. Note: 2. This bit is not used in SPI TI mode..
Bit 8: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O value of the NSS pin is ignored. Note: This bit is not used in SPI TI mode..
Bit 9: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. Note: This bit is not used in SPI TI mode..
Bit 10: Receive only mode enabled. This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active.This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted..
Bit 11: CRC length This bit is set and cleared by software to select the CRC length. Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 12: Transmit CRC next Note: This bit has to be written as soon as the last data is written in the SPI_DR register..
Bit 13: Hardware CRC calculation enable Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 14: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode. Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used..
Bit 15: Bidirectional data mode enable. This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active..
SPI control register 2
Offset: 0x4, size: 16, reset: 0x00000700, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDMA_TX
rw |
LDMA_RX
rw |
FRXTH
rw |
DS
rw |
TXEIE
rw |
RXNEIE
rw |
ERRIE
rw |
FRF
rw |
NSSP
rw |
SSOE
rw |
TXDMAEN
rw |
RXDMAEN
rw |
Bit 0: Rx buffer DMA enable When this bit is set, a DMA request is generated whenever the RXNE flag is set..
Bit 1: Tx buffer DMA enable When this bit is set, a DMA request is generated whenever the TXE flag is set..
Bit 2: SS output enable Note: This bit is not used in SPI TI mode..
Bit 3: NSS pulse management This bit is used in master mode only. it allows the SPI to generate an NSS pulse between two consecutive data when doing continuous transfers. In the case of a single data transfer, it forces the NSS pin high level after the transfer. It has no meaning if CPHA = 1, or FRF = 1. Note: 1. This bit must be written only when the SPI is disabled (SPE=0). Note: 2. This bit is not used in SPI TI mode..
Bit 4: Frame format 1 SPI TI mode Note: This bit must be written only when the SPI is disabled (SPE=0)..
Bit 5: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode)..
Bit 6: RX buffer not empty interrupt enable.
Bit 7: Tx buffer empty interrupt enable.
Bits 8-11: Data size These bits configure the data length for SPI transfers. If software attempts to write one of the Not used values, they are forced to the value 0111 (8-bit).
Bit 12: FIFO reception threshold This bit is used to set the threshold of the RXFIFO that triggers an RXNE event.
Bit 13: Last DMA transfer for reception This bit is used in data packing mode, to define if the total number of data to receive by DMA is odd or even. It has significance only if the RXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
Bit 14: Last DMA transfer for transmission This bit is used in data packing mode, to define if the total number of data to transmit by DMA is odd or even. It has significance only if the TXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
SPI status register
Offset: 0x8, size: 16, reset: 0x00000002, access: Unspecified
8/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FTLVL
r |
FRLVL
r |
FRE
r |
BSY
r |
OVR
r |
MODF
r |
CRCERR
rw |
TXE
r |
RXNE
r |
Bit 0: Receive buffer not empty.
Bit 1: Transmit buffer empty.
Bit 4: CRC error flag Note: This flag is set by hardware and cleared by software writing 0..
Bit 5: Mode fault This flag is set by hardware and reset by a software sequence. Refer to Section1: Mode fault (MODF) on page1964 for the software sequence..
Bit 6: Overrun flag This flag is set by hardware and reset by a software sequence..
Bit 7: Busy flag This flag is set and cleared by hardware. Note: The BSY flag must be used with caution: refer to Section133.4.10: SPI status flags and Procedure for disabling the SPI on page1954..
Bit 8: Frame format error This flag is used for SPI in TI slave mode. Refer to Section133.4.11: SPI error flags. This flag is set by hardware and reset when SPI_SR is read by software..
Bits 9-10: FIFO reception level These bits are set and cleared by hardware. Note: These bits are not used in SPI receive-only mode while CRC calculation is enabled..
Bits 11-12: FIFO transmission level These bits are set and cleared by hardware..
SPI data register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DR
rw |
Bits 0-15: Data register Data received or to be transmitted The data register serves as an interface between the Rx and Tx FIFOs. When the data register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See Section133.4.9: Data transmission and reception procedures). Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and read as zero when the register is read. The Rx threshold setting must always correspond with the read access currently used..
SPI CRC polynomial register
Offset: 0x10, size: 16, reset: 0x00000007, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRCPOLY
rw |
SPI Rx CRC register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXCRC
r |
Bits 0-15: Rx CRC register When CRC calculation is enabled, the RXCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value..
SPI Tx CRC register
Offset: 0x18, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXCRC
r |
Bits 0-15: Tx CRC register When CRC calculation is enabled, the TXCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value..
0x40003800: SPI address block description
10/39 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | SPI_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | SPI_CR2 | ||||||||||||||||||||||||||||||||
0x8 (16-bit) | SPI_SR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | SPI_DR | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | SPI_CRCPR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | SPI_RXCRCR | ||||||||||||||||||||||||||||||||
0x18 (16-bit) | SPI_TXCRCR |
SPI control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/14 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BIDIMODE
rw |
BIDIOE
rw |
CRCEN
rw |
CRCNEXT
rw |
CRCL
rw |
RXONLY
rw |
SSM
rw |
SSI
rw |
LSBFIRST
rw |
SPE
rw |
BR
rw |
MSTR
rw |
CPOL
rw |
CPHA
rw |
Bit 0: Clock phase Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 1: Clock polarity Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 2: Master selection Note: This bit should not be changed when communication is ongoing..
Bits 3-5: Baud rate control Note: These bits should not be changed when communication is ongoing..
Bit 6: SPI enable Note: When disabling the SPI, follow the procedure described in Procedure for disabling the SPI on page1954..
Bit 7: Frame format Note: 1. This bit should not be changed when communication is ongoing. Note: 2. This bit is not used in SPI TI mode..
Bit 8: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O value of the NSS pin is ignored. Note: This bit is not used in SPI TI mode..
Bit 9: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. Note: This bit is not used in SPI TI mode..
Bit 10: Receive only mode enabled. This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active.This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted..
Bit 11: CRC length This bit is set and cleared by software to select the CRC length. Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 12: Transmit CRC next Note: This bit has to be written as soon as the last data is written in the SPI_DR register..
Bit 13: Hardware CRC calculation enable Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 14: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode. Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used..
Bit 15: Bidirectional data mode enable. This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active..
SPI control register 2
Offset: 0x4, size: 16, reset: 0x00000700, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDMA_TX
rw |
LDMA_RX
rw |
FRXTH
rw |
DS
rw |
TXEIE
rw |
RXNEIE
rw |
ERRIE
rw |
FRF
rw |
NSSP
rw |
SSOE
rw |
TXDMAEN
rw |
RXDMAEN
rw |
Bit 0: Rx buffer DMA enable When this bit is set, a DMA request is generated whenever the RXNE flag is set..
Bit 1: Tx buffer DMA enable When this bit is set, a DMA request is generated whenever the TXE flag is set..
Bit 2: SS output enable Note: This bit is not used in SPI TI mode..
Bit 3: NSS pulse management This bit is used in master mode only. it allows the SPI to generate an NSS pulse between two consecutive data when doing continuous transfers. In the case of a single data transfer, it forces the NSS pin high level after the transfer. It has no meaning if CPHA = 1, or FRF = 1. Note: 1. This bit must be written only when the SPI is disabled (SPE=0). Note: 2. This bit is not used in SPI TI mode..
Bit 4: Frame format 1 SPI TI mode Note: This bit must be written only when the SPI is disabled (SPE=0)..
Bit 5: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode)..
Bit 6: RX buffer not empty interrupt enable.
Bit 7: Tx buffer empty interrupt enable.
Bits 8-11: Data size These bits configure the data length for SPI transfers. If software attempts to write one of the Not used values, they are forced to the value 0111 (8-bit).
Bit 12: FIFO reception threshold This bit is used to set the threshold of the RXFIFO that triggers an RXNE event.
Bit 13: Last DMA transfer for reception This bit is used in data packing mode, to define if the total number of data to receive by DMA is odd or even. It has significance only if the RXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
Bit 14: Last DMA transfer for transmission This bit is used in data packing mode, to define if the total number of data to transmit by DMA is odd or even. It has significance only if the TXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
SPI status register
Offset: 0x8, size: 16, reset: 0x00000002, access: Unspecified
8/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FTLVL
r |
FRLVL
r |
FRE
r |
BSY
r |
OVR
r |
MODF
r |
CRCERR
rw |
TXE
r |
RXNE
r |
Bit 0: Receive buffer not empty.
Bit 1: Transmit buffer empty.
Bit 4: CRC error flag Note: This flag is set by hardware and cleared by software writing 0..
Bit 5: Mode fault This flag is set by hardware and reset by a software sequence. Refer to Section1: Mode fault (MODF) on page1964 for the software sequence..
Bit 6: Overrun flag This flag is set by hardware and reset by a software sequence..
Bit 7: Busy flag This flag is set and cleared by hardware. Note: The BSY flag must be used with caution: refer to Section133.4.10: SPI status flags and Procedure for disabling the SPI on page1954..
Bit 8: Frame format error This flag is used for SPI in TI slave mode. Refer to Section133.4.11: SPI error flags. This flag is set by hardware and reset when SPI_SR is read by software..
Bits 9-10: FIFO reception level These bits are set and cleared by hardware. Note: These bits are not used in SPI receive-only mode while CRC calculation is enabled..
Bits 11-12: FIFO transmission level These bits are set and cleared by hardware..
SPI data register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DR
rw |
Bits 0-15: Data register Data received or to be transmitted The data register serves as an interface between the Rx and Tx FIFOs. When the data register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See Section133.4.9: Data transmission and reception procedures). Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and read as zero when the register is read. The Rx threshold setting must always correspond with the read access currently used..
SPI CRC polynomial register
Offset: 0x10, size: 16, reset: 0x00000007, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRCPOLY
rw |
SPI Rx CRC register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXCRC
r |
Bits 0-15: Rx CRC register When CRC calculation is enabled, the RXCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value..
SPI Tx CRC register
Offset: 0x18, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXCRC
r |
Bits 0-15: Tx CRC register When CRC calculation is enabled, the TXCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value..
0x40003c00: SPI address block description
10/39 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | SPI_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | SPI_CR2 | ||||||||||||||||||||||||||||||||
0x8 (16-bit) | SPI_SR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | SPI_DR | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | SPI_CRCPR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | SPI_RXCRCR | ||||||||||||||||||||||||||||||||
0x18 (16-bit) | SPI_TXCRCR |
SPI control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/14 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BIDIMODE
rw |
BIDIOE
rw |
CRCEN
rw |
CRCNEXT
rw |
CRCL
rw |
RXONLY
rw |
SSM
rw |
SSI
rw |
LSBFIRST
rw |
SPE
rw |
BR
rw |
MSTR
rw |
CPOL
rw |
CPHA
rw |
Bit 0: Clock phase Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 1: Clock polarity Note: This bit should not be changed when communication is ongoing. Note: This bit is not used in SPI TI mode except the case when CRC is applied at TI mode..
Bit 2: Master selection Note: This bit should not be changed when communication is ongoing..
Bits 3-5: Baud rate control Note: These bits should not be changed when communication is ongoing..
Bit 6: SPI enable Note: When disabling the SPI, follow the procedure described in Procedure for disabling the SPI on page1954..
Bit 7: Frame format Note: 1. This bit should not be changed when communication is ongoing. Note: 2. This bit is not used in SPI TI mode..
Bit 8: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O value of the NSS pin is ignored. Note: This bit is not used in SPI TI mode..
Bit 9: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. Note: This bit is not used in SPI TI mode..
Bit 10: Receive only mode enabled. This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active.This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted..
Bit 11: CRC length This bit is set and cleared by software to select the CRC length. Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 12: Transmit CRC next Note: This bit has to be written as soon as the last data is written in the SPI_DR register..
Bit 13: Hardware CRC calculation enable Note: This bit should be written only when SPI is disabled (SPE = 0) for correct operation..
Bit 14: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode. Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used..
Bit 15: Bidirectional data mode enable. This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active..
SPI control register 2
Offset: 0x4, size: 16, reset: 0x00000700, access: Unspecified
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDMA_TX
rw |
LDMA_RX
rw |
FRXTH
rw |
DS
rw |
TXEIE
rw |
RXNEIE
rw |
ERRIE
rw |
FRF
rw |
NSSP
rw |
SSOE
rw |
TXDMAEN
rw |
RXDMAEN
rw |
Bit 0: Rx buffer DMA enable When this bit is set, a DMA request is generated whenever the RXNE flag is set..
Bit 1: Tx buffer DMA enable When this bit is set, a DMA request is generated whenever the TXE flag is set..
Bit 2: SS output enable Note: This bit is not used in SPI TI mode..
Bit 3: NSS pulse management This bit is used in master mode only. it allows the SPI to generate an NSS pulse between two consecutive data when doing continuous transfers. In the case of a single data transfer, it forces the NSS pin high level after the transfer. It has no meaning if CPHA = 1, or FRF = 1. Note: 1. This bit must be written only when the SPI is disabled (SPE=0). Note: 2. This bit is not used in SPI TI mode..
Bit 4: Frame format 1 SPI TI mode Note: This bit must be written only when the SPI is disabled (SPE=0)..
Bit 5: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode)..
Bit 6: RX buffer not empty interrupt enable.
Bit 7: Tx buffer empty interrupt enable.
Bits 8-11: Data size These bits configure the data length for SPI transfers. If software attempts to write one of the Not used values, they are forced to the value 0111 (8-bit).
Bit 12: FIFO reception threshold This bit is used to set the threshold of the RXFIFO that triggers an RXNE event.
Bit 13: Last DMA transfer for reception This bit is used in data packing mode, to define if the total number of data to receive by DMA is odd or even. It has significance only if the RXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
Bit 14: Last DMA transfer for transmission This bit is used in data packing mode, to define if the total number of data to transmit by DMA is odd or even. It has significance only if the TXDMAEN bit in the SPI_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPI_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPI_CR1 register). Note: Refer to Procedure for disabling the SPI on page1954 if the CRCEN bit is set..
SPI status register
Offset: 0x8, size: 16, reset: 0x00000002, access: Unspecified
8/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FTLVL
r |
FRLVL
r |
FRE
r |
BSY
r |
OVR
r |
MODF
r |
CRCERR
rw |
TXE
r |
RXNE
r |
Bit 0: Receive buffer not empty.
Bit 1: Transmit buffer empty.
Bit 4: CRC error flag Note: This flag is set by hardware and cleared by software writing 0..
Bit 5: Mode fault This flag is set by hardware and reset by a software sequence. Refer to Section1: Mode fault (MODF) on page1964 for the software sequence..
Bit 6: Overrun flag This flag is set by hardware and reset by a software sequence..
Bit 7: Busy flag This flag is set and cleared by hardware. Note: The BSY flag must be used with caution: refer to Section133.4.10: SPI status flags and Procedure for disabling the SPI on page1954..
Bit 8: Frame format error This flag is used for SPI in TI slave mode. Refer to Section133.4.11: SPI error flags. This flag is set by hardware and reset when SPI_SR is read by software..
Bits 9-10: FIFO reception level These bits are set and cleared by hardware. Note: These bits are not used in SPI receive-only mode while CRC calculation is enabled..
Bits 11-12: FIFO transmission level These bits are set and cleared by hardware..
SPI data register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DR
rw |
Bits 0-15: Data register Data received or to be transmitted The data register serves as an interface between the Rx and Tx FIFOs. When the data register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See Section133.4.9: Data transmission and reception procedures). Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and read as zero when the register is read. The Rx threshold setting must always correspond with the read access currently used..
SPI CRC polynomial register
Offset: 0x10, size: 16, reset: 0x00000007, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRCPOLY
rw |
SPI Rx CRC register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXCRC
r |
Bits 0-15: Rx CRC register When CRC calculation is enabled, the RXCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value..
SPI Tx CRC register
Offset: 0x18, size: 16, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXCRC
r |
Bits 0-15: Tx CRC register When CRC calculation is enabled, the TXCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value..
0x40010000: SYSCFG register block
81/109 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | SYSCFG_CFGR1 | ||||||||||||||||||||||||||||||||
0x18 | SYSCFG_CFGR2 | ||||||||||||||||||||||||||||||||
0x1c | SYSCFG_SCSR | ||||||||||||||||||||||||||||||||
0x20 | SYSCFG_SKR | ||||||||||||||||||||||||||||||||
0x24 | SYSCFG_TSCCR | ||||||||||||||||||||||||||||||||
0x80 | SYSCFG_ITLINE0 | ||||||||||||||||||||||||||||||||
0x84 | SYSCFG_ITLINE1 | ||||||||||||||||||||||||||||||||
0x88 | SYSCFG_ITLINE2 | ||||||||||||||||||||||||||||||||
0x8c | SYSCFG_ITLINE3 | ||||||||||||||||||||||||||||||||
0x90 | SYSCFG_ITLINE4 | ||||||||||||||||||||||||||||||||
0x94 | SYSCFG_ITLINE5 | ||||||||||||||||||||||||||||||||
0x98 | SYSCFG_ITLINE6 | ||||||||||||||||||||||||||||||||
0x9c | SYSCFG_ITLINE7 | ||||||||||||||||||||||||||||||||
0xa0 | SYSCFG_ITLINE8 | ||||||||||||||||||||||||||||||||
0xa4 | SYSCFG_ITLINE9 | ||||||||||||||||||||||||||||||||
0xa8 | SYSCFG_ITLINE10 | ||||||||||||||||||||||||||||||||
0xac | SYSCFG_ITLINE11 | ||||||||||||||||||||||||||||||||
0xb0 | SYSCFG_ITLINE12 | ||||||||||||||||||||||||||||||||
0xb4 | SYSCFG_ITLINE13 | ||||||||||||||||||||||||||||||||
0xb8 | SYSCFG_ITLINE14 | ||||||||||||||||||||||||||||||||
0xbc | SYSCFG_ITLINE15 | ||||||||||||||||||||||||||||||||
0xc0 | SYSCFG_ITLINE16 | ||||||||||||||||||||||||||||||||
0xc4 | SYSCFG_ITLINE17 | ||||||||||||||||||||||||||||||||
0xc8 | SYSCFG_ITLINE18 | ||||||||||||||||||||||||||||||||
0xcc | SYSCFG_ITLINE19 | ||||||||||||||||||||||||||||||||
0xd0 | SYSCFG_ITLINE20 | ||||||||||||||||||||||||||||||||
0xd4 | SYSCFG_ITLINE21 | ||||||||||||||||||||||||||||||||
0xd8 | SYSCFG_ITLINE22 | ||||||||||||||||||||||||||||||||
0xdc | SYSCFG_ITLINE23 | ||||||||||||||||||||||||||||||||
0xe0 | SYSCFG_ITLINE24 | ||||||||||||||||||||||||||||||||
0xe4 | SYSCFG_ITLINE25 | ||||||||||||||||||||||||||||||||
0xe8 | SYSCFG_ITLINE26 | ||||||||||||||||||||||||||||||||
0xec | SYSCFG_ITLINE27 | ||||||||||||||||||||||||||||||||
0xf0 | SYSCFG_ITLINE28 | ||||||||||||||||||||||||||||||||
0xf4 | SYSCFG_ITLINE29 | ||||||||||||||||||||||||||||||||
0xf8 | SYSCFG_ITLINE30 | ||||||||||||||||||||||||||||||||
0xfc | SYSCFG_ITLINE31 |
SYSCFG configuration register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/13 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I2C3_FMP
rw |
I2C_PA10_FMP
rw |
I2C_PA9_FMP
rw |
I2C_PB9_FMP
rw |
I2C_PB8_FMP
rw |
I2C_PB7_FMP
rw |
I2C_PB6_FMP
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
BOOSTEN
rw |
IR_MOD
rw |
IR_POL
rw |
PA12_RMP
rw |
PA11_RMP
rw |
MEM_MODE
rw |
Bits 0-1: Memory mapping selection bits These bits are set and cleared by software. They control the memory internal mapping at address 0x000010000. After reset these bits take on the value selected by the actual boot mode configuration. Refer to Section12.5: Boot configuration for more details. X0: Main flash memory mapped at 0x000010000.
Bit 3: PA11 pin remapping This bit is set and cleared by software. When set, it remaps the PA11 pin to operate as PA9 GPIO port, instead as PA11 GPIO port..
Bit 4: PA12 pin remapping This bit is set and cleared by software. When set, it remaps the PA12 pin to operate as PA10 GPIO port, instead as PA12 GPIO port..
Bit 5: IR output polarity selection.
Bits 6-7: IR Modulation Envelope signal selection This bitfield selects the signal for IR modulation envelope:.
Bit 8: I/O analog switch voltage booster enable This bit selects the way of supplying I/O analog switches: When using the analog inputs , setting to 0 is recommended for high V<sub>DD</sub>, setting to 1 for low V<sub>DD</sub> (less than 2.4 V)..
Bit 16: Fast Mode Plus (FM+) enable for PB6 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PB6 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 17: Fast Mode Plus (FM+) enable for PB7 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PB7 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 18: Fast Mode Plus (FM+) enable for PB8 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PB8 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 19: Fast Mode Plus (FM+) enable for PB9 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PB9 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 22: Fast Mode Plus (FM+) enable for PA9 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PA9 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 23: Fast Mode Plus (FM+) enable for PA10 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on PA10 I/O port. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
Bit 24: Fast Mode Plus (FM+) enable for I2C3 This bit is set and cleared by software. It enables I<sup>2</sup>C FM+ driving capability on I/O ports configured as I2C3 through GPIOx_AFR registers. With this bit in disable state, the I<sup>2</sup>C FM+ driving capability on I/O ports configured as I2C3 can be enabled through their corresponding I2Cx_FMP bit. When I<sup>2</sup>C FM+ is enabled, the speed control is ignored. Note: This control bit is kept for legacy reasons. It is recommended to use the FMP bit of the I2Cx_CR1 register instead..
SYSCFG configuration register 2
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/7 fields covered.
Bit 0: Cortex<Superscript>1<Default 1 Font>-M0+ LOCKUP bit enable bit This bit is set by software and cleared by a system reset. It can be use to enable and lock the connection of Cortex<Superscript>1<Default 1 Font>-M0+ LOCKUP (Hardfault) output to TIM1/15/16 Break input..
Bit 1: SRAM1 parity lock bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the SRAM1 parity error signal connection to TIM1/15/16 Break input..
Bit 2: PVD lock enable bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the PVD connection to TIM1/15/16 Break input, as well as the PVDE and PLS[2:0] in the PWR_CR register..
Bit 3: ECC error lock bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the flash ECC 2-bit error detection signal connection to TIM1/15/16 Break input..
Bit 4: Backup SRAM2 parity lock This bit is set by software and cleared by a system reset. It can be used to enable and lock the SRAM2 parity error signal connection to TIM1/15/16 Break input..
Bit 7: Backup SRAM2 parity error flag This bit is set by hardware when an SRAM2 parity error is detected. It is cleared by software by writing 1..
Bit 8: SRAM1 parity error flag This bit is set by hardware when an SRAM1 parity error is detected. It is cleared by software by writing 1..
SYSCFG SRAM2 control and status register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
1/2 fields covered.
Bit 0: SRAM2 erase Setting this bit starts a hardware SRAM2 erase operation. This bit is automatically cleared at the end of the SRAM2 erase operation. Note: This bit is write-protected: setting this bit is possible only after the correct key sequence is written in the SYSCFG_SKR register..
Bit 1: SRAM2 busy by erase operation.
SYSCFG SRAM2 key register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KEY
w |
SYSCFG TSC comparator register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSC_IOCTRL
rw |
G7_IO1
rw |
G6_IO1
rw |
G4_IO3
rw |
G2_IO3
rw |
G2_IO1
rw |
Bit 0: Comparator mode for group 2 on I/O 1.
Bit 1: Comparator mode for group 2 on I/O 3.
Bit 2: Comparator mode for group 4 on I/O 3.
Bit 3: Comparator mode for group 6 on I/O 1.
Bit 4: Comparator mode for group 7 on I/O 1.
Bit 5: I/O control in comparator mode The I/O control in comparator mode can be overwritten by hardware..
SYSCFG interrupt line 0 status register
Offset: 0x80, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WWDG
r |
SYSCFG interrupt line 1 status register
Offset: 0x84, size: 32, reset: 0x00000000, access: Unspecified
4/4 fields covered.
Bit 0: PVD supply monitoring interrupt request pending (EXTI line 16)..
Bit 1: V<sub>DDUSB</sub> supply monitoring interrupt request pending (EXTI line 19).
Bit 2: ADC supply monitoring interrupt request pending (EXTI line 20).
Bit 3: DAC supply monitoring interrupt request pending (EXTI line 21).
SYSCFG interrupt line 2 status register
Offset: 0x88, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 3 status register
Offset: 0x8c, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 4 status register
Offset: 0x90, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 5 status register
Offset: 0x94, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 6 status register
Offset: 0x98, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 7 status register
Offset: 0x9c, size: 32, reset: 0x00000000, access: Unspecified
12/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXTI15
r |
EXTI14
r |
EXTI13
r |
EXTI12
r |
EXTI11
r |
EXTI10
r |
EXTI9
r |
EXTI8
r |
EXTI7
r |
EXTI6
r |
EXTI5
r |
EXTI4
r |
Bit 0: EXTI line 4 interrupt request pending.
Bit 1: EXTI line 5 interrupt request pending.
Bit 2: EXTI line 6 interrupt request pending.
Bit 3: EXTI line 7 interrupt request pending.
Bit 4: EXTI line 8 interrupt request pending.
Bit 5: EXTI line 9 interrupt request pending.
Bit 6: EXTI line 10 interrupt request pending.
Bit 7: EXTI line 11 interrupt request pending.
Bit 8: EXTI line 12 interrupt request pending.
Bit 9: EXTI line 13 interrupt request pending.
Bit 10: EXTI line 14 interrupt request pending.
Bit 11: EXTI line 15 interrupt request pending.
SYSCFG interrupt line 8 status register
Offset: 0xa0, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USB
r |
SYSCFG interrupt line 9 status register
Offset: 0xa4, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMA1_CH1
r |
SYSCFG interrupt line 10 status register
Offset: 0xa8, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 11 status register
Offset: 0xac, size: 32, reset: 0x00000000, access: Unspecified
10/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMA2_CH5
r |
DMA2_CH4
r |
DMA2_CH3
r |
DMA2_CH2
r |
DMA2_CH1
r |
DMA1_CH7
r |
DMA1_CH6
r |
DMA1_CH5
r |
DMA1_CH4
r |
DMAMUX
r |
Bit 0: DMAMUX interrupt request pending.
Bit 1: DMA1 channel 4 interrupt request pending.
Bit 2: DMA1 channel 5 interrupt request pending.
Bit 3: DMA1 channel 6 interrupt request pending.
Bit 4: DMA1 channel 7 interrupt request pending.
Bit 5: DMA2 channel 1 interrupt request pending.
Bit 6: DMA2 channel 2 interrupt request pending.
Bit 7: DMA2 channel 3 interrupt request pending.
Bit 8: DMA2 channel 4 interrupt request pending.
Bit 9: DMA2 channel 5 interrupt request pending.
SYSCFG interrupt line 12 status register
Offset: 0xb0, size: 32, reset: 0x00000000, access: Unspecified
3/3 fields covered.
SYSCFG interrupt line 13 status register
Offset: 0xb4, size: 32, reset: 0x00000000, access: Unspecified
4/4 fields covered.
SYSCFG interrupt line 14 status register
Offset: 0xb8, size: 32, reset: 0x00000000, access: Unspecified
4/4 fields covered.
SYSCFG interrupt line 15 status register
Offset: 0xbc, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TIM2
r |
SYSCFG interrupt line 16 status register
Offset: 0xc0, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TIM3
r |
SYSCFG interrupt line 17 status register
Offset: 0xc4, size: 32, reset: 0x00000000, access: Unspecified
3/3 fields covered.
SYSCFG interrupt line 18 status register
Offset: 0xc8, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 19 status register
Offset: 0xcc, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 20 status register
Offset: 0xd0, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TIM16
r |
SYSCFG interrupt line 21 status register
Offset: 0xd4, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 22 status register
Offset: 0xd8, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCD
r |
SYSCFG interrupt line 23 status register
Offset: 0xdc, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I2C1
r |
SYSCFG interrupt line 24 status register
Offset: 0xe0, size: 32, reset: 0x00000000, access: Unspecified
3/3 fields covered.
SYSCFG interrupt line 25 status register
Offset: 0xe4, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPI1
r |
SYSCFG interrupt line 26 status register
Offset: 0xe8, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 27 status register
Offset: 0xec, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USART1
r |
SYSCFG interrupt line 28 status register
Offset: 0xf0, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 29 status register
Offset: 0xf4, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 30 status register
Offset: 0xf8, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
SYSCFG interrupt line 31 status register
Offset: 0xfc, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RNG
r |
0x4000b000: TAMP register block
18/77 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | TAMP_CR1 | ||||||||||||||||||||||||||||||||
0x4 | TAMP_CR2 | ||||||||||||||||||||||||||||||||
0x8 | TAMP_CR3 | ||||||||||||||||||||||||||||||||
0xc | TAMP_FLTCR | ||||||||||||||||||||||||||||||||
0x2c | TAMP_IER | ||||||||||||||||||||||||||||||||
0x30 | TAMP_SR | ||||||||||||||||||||||||||||||||
0x34 | TAMP_MISR | ||||||||||||||||||||||||||||||||
0x3c | TAMP_SCR | ||||||||||||||||||||||||||||||||
0x100 | TAMP_BKP0R | ||||||||||||||||||||||||||||||||
0x104 | TAMP_BKP1R | ||||||||||||||||||||||||||||||||
0x108 | TAMP_BKP2R | ||||||||||||||||||||||||||||||||
0x10c | TAMP_BKP3R | ||||||||||||||||||||||||||||||||
0x110 | TAMP_BKP4R | ||||||||||||||||||||||||||||||||
0x114 | TAMP_BKP5R | ||||||||||||||||||||||||||||||||
0x118 | TAMP_BKP6R | ||||||||||||||||||||||||||||||||
0x11c | TAMP_BKP7R | ||||||||||||||||||||||||||||||||
0x120 | TAMP_BKP8R |
TAMP control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAMP6E
rw |
ITAMP5E
rw |
ITAMP4E
rw |
ITAMP3E
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TAMP5E
rw |
TAMP4E
rw |
TAMP3E
rw |
TAMP2E
rw |
TAMP1E
rw |
Bit 0: Tamper detection on TAMP_IN1 enable.
Bit 1: Tamper detection on TAMP_IN2 enable<sup>(1)</sup>.
Bit 2: Tamper detection on TAMP_IN3 enable<sup>(1)</sup>.
Bit 3: Tamper detection on TAMP_IN4 enable<sup>(1)</sup>.
Bit 4: Tamper detection on TAMP_IN5 enable<sup>(1)</sup>.
Bit 18: Internal tamper 3 enable.
Bit 19: Internal tamper 4 enable.
Bit 20: Internal tamper 5 enable.
Bit 21: Internal tamper 6 enable.
TAMP control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TAMP5TRG
rw |
TAMP4TRG
rw |
TAMP3TRG
rw |
TAMP2TRG
rw |
TAMP1TRG
rw |
BKERASE
w |
BKBLOCK
rw |
TAMP3MSK
rw |
TAMP2MSK
rw |
TAMP1MSK
rw |
||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TAMP5POM
rw |
TAMP4POM
rw |
TAMP3POM
rw |
TAMP2POM
rw |
TAMP1POM
rw |
Bit 0: Tamper 1 potential mode.
Bit 1: Tamper 2 potential mode.
Bit 2: Tamper 3 potential mode.
Bit 3: Tamper 4 potential mode.
Bit 4: Tamper 5 potential mode.
Bit 16: Tamper 1 mask The tamper 1 interrupt must not be enabled when TAMP1MSK is set..
Bit 17: Tamper 2 mask The tamper 2 interrupt must not be enabled when TAMP2MSK is set..
Bit 18: Tamper 3 mask The tamper 3 interrupt must not be enabled when TAMP3MSK is set..
Bit 22: Backup registers and device secrets<sup>(1)</sup> access blocked.
Bit 23: Backup registers and device secrets<sup>(1)</sup> erase Writing 1 to this bit reset the backup registers and device secrets<sup>(1)</sup>. Writing 0 has no effect. This bit is always read as 0..
Bit 24: Active level for tamper 1 input If TAMPFLT1=100 tamper 1 input rising edge triggers a tamper detection event. If TAMPFLT1=100 tamper 1 input falling edge triggers a tamper detection event..
Bit 25: Active level for tamper 2 input If TAMPFLT = 00 tamper 2 input rising edge triggers a tamper detection event. If TAMPFLT1=100 tamper 2 input falling edge triggers a tamper detection event..
Bit 26: Active level for tamper 3 input If TAMPFLT1=100 tamper 3 input rising edge triggers a tamper detection event. If TAMPFLT1=100 tamper 3 input falling edge triggers a tamper detection event..
Bit 27: Active level for tamper 4 input (active mode disabled) If TAMPFLT1=100 tamper 4 input rising edge triggers a tamper detection event. If TAMPFLT1=100 tamper 4 input falling edge triggers a tamper detection event..
Bit 28: Active level for tamper 5 input (active mode disabled) If TAMPFLT1=100 tamper 5 input rising edge triggers a tamper detection event. If TAMPFLT1=100 tamper 5 input falling edge triggers a tamper detection event..
TAMP control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
TAMP filter control register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
Bits 0-2: Tamper sampling frequency Determines the frequency at which each of the TAMP_INx inputs are sampled..
Bits 3-4: TAMP_INx filter count These bits determines the number of consecutive samples at the specified level (TAMP*TRG) needed to activate a tamper event. TAMPFLT is valid for each of the TAMP_INx inputs..
Bits 5-6: TAMP_INx precharge duration These bit determines the duration of time during which the pull-up/is activated before each sample. TAMPPRCH is valid for each of the TAMP_INx inputs..
Bit 7: TAMP_INx pull-up disable This bit determines if each of the TAMPx pins are precharged before each sample..
TAMP interrupt enable register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAMP6IE
rw |
ITAMP5IE
rw |
ITAMP4IE
rw |
ITAMP3IE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TAMP5IE
rw |
TAMP4IE
rw |
TAMP3IE
rw |
TAMP2IE
rw |
TAMP1IE
rw |
Bit 0: Tamper 1 interrupt enable.
Bit 1: Tamper 2 interrupt enable.
Bit 2: Tamper 3 interrupt enable.
Bit 3: Tamper 4 interrupt enable.
Bit 4: Tamper 5 interrupt enable.
Bit 18: Internal tamper 3 interrupt enable.
Bit 19: Internal tamper 4 interrupt enable.
Bit 20: Internal tamper 5 interrupt enable.
Bit 21: Internal tamper 6 interrupt enable.
TAMP status register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
9/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAMP6F
r |
ITAMP5F
r |
ITAMP4F
r |
ITAMP3F
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TAMP5F
r |
TAMP4F
r |
TAMP3F
r |
TAMP2F
r |
TAMP1F
r |
Bit 0: TAMP1 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP1 input..
Bit 1: TAMP2 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP2 input..
Bit 2: TAMP3 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP3 input..
Bit 3: TAMP4 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP4 input..
Bit 4: TAMP5 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP5 input..
Bit 18: Internal tamper 3 flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 3..
Bit 19: Internal tamper 4 flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 4..
Bit 20: Internal tamper 5 flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 5..
Bit 21: Internal tamper 6 flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 6..
TAMP masked interrupt status register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
9/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAMP6MF
r |
ITAMP5MF
r |
ITAMP4MF
r |
ITAMP3MF
r |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
TAMP5MF
r |
TAMP4MF
r |
TAMP3MF
r |
TAMP2MF
r |
TAMP1MF
r |
Bit 0: TAMP1 interrupt masked flag This flag is set by hardware when the tamper 1 interrupt is raised..
Bit 1: TAMP2 interrupt masked flag This flag is set by hardware when the tamper 2 interrupt is raised..
Bit 2: TAMP3 interrupt masked flag This flag is set by hardware when the tamper 3 interrupt is raised..
Bit 3: TAMP4 interrupt masked flag This flag is set by hardware when the tamper 4 interrupt is raised..
Bit 4: TAMP5 interrupt masked flag This flag is set by hardware when the tamper 5 interrupt is raised..
Bit 18: Internal tamper 3 interrupt masked flag This flag is set by hardware when the internal tamper 3 interrupt is raised..
Bit 19: Internal tamper 4 interrupt masked flag This flag is set by hardware when the internal tamper 4 interrupt is raised..
Bit 20: Internal tamper 5 interrupt masked flag This flag is set by hardware when the internal tamper 5 interrupt is raised..
Bit 21: Internal tamper 6 interrupt masked flag This flag is set by hardware when the internal tamper 6 interrupt is raised..
TAMP status clear register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
0/9 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CITAMP6F
w |
CITAMP5F
w |
CITAMP4F
w |
CITAMP3F
w |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTAMP5F
w |
CTAMP4F
w |
CTAMP3F
w |
CTAMP2F
w |
CTAMP1F
w |
Bit 0: Clear TAMP1 detection flag Writing 1 in this bit clears the TAMP1F bit in the TAMP_SR register..
Bit 1: Clear TAMP2 detection flag Writing 1 in this bit clears the TAMP2F bit in the TAMP_SR register..
Bit 2: Clear TAMP3 detection flag Writing 1 in this bit clears the TAMP3F bit in the TAMP_SR register..
Bit 3: Clear TAMP4 detection flag Writing 1 in this bit clears the TAMP4F bit in the TAMP_SR register..
Bit 4: Clear TAMP5 detection flag Writing 1 in this bit clears the TAMP5F bit in the TAMP_SR register..
Bit 18: Clear ITAMP3 detection flag Writing 1 in this bit clears the ITAMP3F bit in the TAMP_SR register..
Bit 19: Clear ITAMP4 detection flag Writing 1 in this bit clears the ITAMP4F bit in the TAMP_SR register..
Bit 20: Clear ITAMP5 detection flag Writing 1 in this bit clears the ITAMP5F bit in the TAMP_SR register..
Bit 21: Clear ITAMP6 detection flag Writing 1 in this bit clears the ITAMP6F bit in the TAMP_SR register..
TAMP backup 0 register
Offset: 0x100, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 1 register
Offset: 0x104, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 2 register
Offset: 0x108, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 3 register
Offset: 0x10c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 4 register
Offset: 0x110, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 5 register
Offset: 0x114, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 6 register
Offset: 0x118, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 7 register
Offset: 0x11c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
TAMP backup 8 register
Offset: 0x120, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
Bits 0-31: The application can write or read data to and from these registers. In the default (ERASE) configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This register is also reset when the readout protection (RDP) is disabled..
0x40012c00: TIM1 address block description
1/190 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM1_CR1 | ||||||||||||||||||||||||||||||||
0x4 | TIM1_CR2 | ||||||||||||||||||||||||||||||||
0x8 | TIM1_SMCR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM1_DIER | ||||||||||||||||||||||||||||||||
0x10 | TIM1_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM1_EGR | ||||||||||||||||||||||||||||||||
0x18 | TIM1_CCMR1_INPUT | ||||||||||||||||||||||||||||||||
0x18 | TIM1_CCMR1_OUTPUT | ||||||||||||||||||||||||||||||||
0x1c | TIM1_CCMR2_INPUT | ||||||||||||||||||||||||||||||||
0x1c | TIM1_CCMR2_OUTPUT | ||||||||||||||||||||||||||||||||
0x20 | TIM1_CCER | ||||||||||||||||||||||||||||||||
0x24 | TIM1_CNT | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM1_PSC | ||||||||||||||||||||||||||||||||
0x2c (16-bit) | TIM1_ARR | ||||||||||||||||||||||||||||||||
0x30 (16-bit) | TIM1_RCR | ||||||||||||||||||||||||||||||||
0x34 (16-bit) | TIM1_CCR1 | ||||||||||||||||||||||||||||||||
0x38 (16-bit) | TIM1_CCR2 | ||||||||||||||||||||||||||||||||
0x3c (16-bit) | TIM1_CCR3 | ||||||||||||||||||||||||||||||||
0x40 (16-bit) | TIM1_CCR4 | ||||||||||||||||||||||||||||||||
0x44 | TIM1_BDTR | ||||||||||||||||||||||||||||||||
0x48 (16-bit) | TIM1_DCR | ||||||||||||||||||||||||||||||||
0x4c | TIM1_DMAR | ||||||||||||||||||||||||||||||||
0x50 | TIM1_OR1 | ||||||||||||||||||||||||||||||||
0x54 | TIM1_CCMR3 | ||||||||||||||||||||||||||||||||
0x58 | TIM1_CCR5 | ||||||||||||||||||||||||||||||||
0x5c (16-bit) | TIM1_CCR6 | ||||||||||||||||||||||||||||||||
0x60 | TIM1_AF1 | ||||||||||||||||||||||||||||||||
0x64 | TIM1_AF2 | ||||||||||||||||||||||||||||||||
0x68 | TIM1_TISEL |
TIM1 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UIFREMAP
rw |
CKD
rw |
ARPE
rw |
CMS
rw |
DIR
rw |
OPM
rw |
URS
rw |
UDIS
rw |
CEN
rw |
Bit 0: Counter enable Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware..
Bit 1: Update disable This bit is set and cleared by software to enable/disable UEV event generation. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller Buffered registers are then loaded with their preload values..
Bit 2: Update request source This bit is set and cleared by software to select the UEV event sources. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller.
Bit 3: One pulse mode.
Bit 4: Direction Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode..
Bits 5-6: Center-aligned mode selection Note: Switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) is not allowed.
Bit 7: Auto-reload preload enable.
Bits 8-9: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t<sub>DTS</sub>)used by the dead-time generators and the digital filters (ETR, TIx): Note: t<sub>DTS</sub> = 1/f<sub>DTS</sub>, t<sub>CK_INT</sub> = 1/f<sub>CK_INT</sub>..
Bit 11: UIF status bit remapping.
TIM1 control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MMS2
rw |
OIS6
rw |
OIS5
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OIS4
rw |
OIS3N
rw |
OIS3
rw |
OIS2N
rw |
OIS2
rw |
OIS1N
rw |
OIS1
rw |
TI1S
rw |
MMS
rw |
CCDS
rw |
CCUS
rw |
CCPC
rw |
Bit 0: Capture/compare preloaded control Note: This bit acts only on channels that have a complementary output..
Bit 2: Capture/compare control update selection Note: This bit acts only on channels that have a complementary output..
Bit 3: Capture/compare DMA selection.
Bits 4-6: Master mode selection These bits allow selected information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer..
Bit 7: TI1 selection.
Bit 8: Output Idle state 1 (OC1 output) Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 9: Output Idle state 1 (OC1N output) Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 10: Output Idle state 2 (OC2 output) Refer to OIS1 bit.
Bit 11: Output Idle state 2 (OC2N output) Refer to OIS1N bit.
Bit 12: Output Idle state 3 (OC3 output) Refer to OIS1 bit.
Bit 13: Output Idle state 3 (OC3N output) Refer to OIS1N bit.
Bit 14: Output Idle state 4 (OC4 output) Refer to OIS1 bit.
Bit 16: Output Idle state 5 (OC5 output) Refer to OIS1 bit.
Bit 18: Output Idle state 6 (OC6 output) Refer to OIS1 bit.
Bits 20-23: Master mode selection 2 These bits allow the information to be sent to ADC for synchronization (TRGO2) to be selected. The combination is as follows: Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer..
TIM1 slave mode control register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS_1
rw |
SMS_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ETP
rw |
ECE
rw |
ETPS
rw |
ETF
rw |
MSM
rw |
TS
rw |
OCCS
rw |
SMS
rw |
Bits 0-2: SMS[0]: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. Codes above 1000: Reserved. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer..
Bit 3: OCREF clear selection This bit is used to select the OCREF clear source..
Bits 4-6: TS[0]: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See Table1118: TIM1 internal trigger connection on page1561 for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition..
Bit 7: Master/slave mode.
Bits 8-11: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:.
Bits 12-13: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of f<sub>CK_INT</sub> frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks..
Bit 14: External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). Note: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF..
Bit 15: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations.
Bit 16: SMS[3].
Bits 20-21: TS[4:3].
TIM1 DMA/interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/15 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDE
rw |
COMDE
rw |
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
CC1DE
rw |
UDE
rw |
BIE
rw |
TIE
rw |
COMIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
CC1IE
rw |
UIE
rw |
Bit 0: Update interrupt enable.
Bit 1: Capture/Compare 1 interrupt enable.
Bit 2: Capture/Compare 2 interrupt enable.
Bit 3: Capture/Compare 3 interrupt enable.
Bit 4: Capture/Compare 4 interrupt enable.
Bit 5: COM interrupt enable.
Bit 6: Trigger interrupt enable.
Bit 7: Break interrupt enable.
Bit 8: Update DMA request enable.
Bit 9: Capture/Compare 1 DMA request enable.
Bit 10: Capture/Compare 2 DMA request enable.
Bit 11: Capture/Compare 3 DMA request enable.
Bit 12: Capture/Compare 4 DMA request enable.
Bit 13: COM DMA request enable.
Bit 14: Trigger DMA request enable.
TIM1 status register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC6IF
rw |
CC5IF
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SBIF
rw |
CC4OF
rw |
CC3OF
rw |
CC2OF
rw |
CC1OF
rw |
B2IF
rw |
BIF
rw |
TIF
rw |
COMIF
rw |
CC4IF
rw |
CC3IF
rw |
CC2IF
rw |
CC1IF
rw |
UIF
rw |
Bit 0: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register. When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. When CNT is reinitialized by a trigger event (refer to Section122.4.3: TIM1 slave mode control register (TIM1_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register..
Bit 1: Capture/Compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). If channel CC1 is configured as output: this flag is set when the content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the content of TIMx_CCR1 is greater than the content of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in down-counting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx_CR1 register for the full description. If channel CC1 is configured as input: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER)..
Bit 2: Capture/Compare 2 interrupt flag Refer to CC1IF description.
Bit 3: Capture/Compare 3 interrupt flag Refer to CC1IF description.
Bit 4: Capture/Compare 4 interrupt flag Refer to CC1IF description.
Bit 5: COM interrupt flag This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software..
Bit 6: Trigger interrupt flag This flag is set by hardware on the TRG trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software..
Bit 7: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active..
Bit 8: Break 2 interrupt flag This flag is set by hardware as soon as the break 2 input goes active. It can be cleared by software if the break 2 input is not active..
Bit 9: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to 0..
Bit 10: Capture/Compare 2 overcapture flag Refer to CC1OF description.
Bit 11: Capture/Compare 3 overcapture flag Refer to CC1OF description.
Bit 12: Capture/Compare 4 overcapture flag Refer to CC1OF description.
Bit 13: System Break interrupt flag This flag is set by hardware as soon as the system break input goes active. It can be cleared by software if the system break input is not active. This flag must be reset to re-start PWM operation..
Bit 16: Compare 5 interrupt flag Refer to CC1IF description (Note: Channel 5 can only be configured as output).
Bit 17: Compare 6 interrupt flag Refer to CC1IF description (Note: Channel 6 can only be configured as output).
TIM1 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
0/9 fields covered.
Bit 0: Update generation This bit can be set by software, it is automatically cleared by hardware..
Bit 1: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high..
Bit 2: Capture/Compare 2 generation Refer to CC1G description.
Bit 3: Capture/Compare 3 generation Refer to CC1G description.
Bit 4: Capture/Compare 4 generation Refer to CC1G description.
Bit 5: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware Note: This bit acts only on channels having a complementary output..
Bit 6: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware..
Bit 7: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware..
Bit 8: Break 2 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware..
TIM1 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bits 0-1: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER)..
Bits 2-3: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=0 (TIMx_CCER register)..
Bits 4-7: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:.
Bits 8-9: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER)..
Bits 10-11: Input capture 2 prescaler Refer to IC1PSC[1:0] description..
Bits 12-15: Input capture 2 filter Refer to IC1F[3:0] description..
TIM1 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC2M_1
rw |
OC1M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC2CE
rw |
OC2M
rw |
OC2PE
rw |
OC2FE
rw |
CC2S
rw |
OC1CE
rw |
OC1M
rw |
OC1PE
rw |
OC1FE
rw |
CC1S
rw |
Bits 0-1: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER)..
Bit 2: Output Compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger..
Bit 3: Output Compare 1 preload enable Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output)..
Bits 4-6: OC1M[2:0]: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output). Note: In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from frozen mode to PWM mode. Note: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. Note: The OC1M[3] bit is not contiguous, located in bit 16..
Bit 7: Output Compare 1 clear enable.
Bits 8-9: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER)..
Bit 10: Output Compare 2 fast enable Refer to OC1FE description..
Bit 11: Output Compare 2 preload enable Refer to OC1PE description..
Bits 12-14: OC2M[2:0]: Output Compare 2 mode Refer to OC1M[3:0] description..
Bit 15: Output Compare 2 clear enable Refer to OC1CE description..
Bit 16: OC1M[3].
Bit 24: OC2M[3].
TIM1 capture/compare mode register 2
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bits 0-1: Capture/compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER)..
Bits 2-3: Input capture 3 prescaler Refer to IC1PSC[1:0] description..
Bits 4-7: Input capture 3 filter Refer to IC1F[3:0] description..
Bits 8-9: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER)..
Bits 10-11: Input capture 4 prescaler Refer to IC1PSC[1:0] description..
Bits 12-15: Input capture 4 filter Refer to IC1F[3:0] description..
TIM1 capture/compare mode register 1
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC4M_1
rw |
OC3M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC4CE
rw |
OC4M
rw |
OC4PE
rw |
OC4FE
rw |
CC4S
rw |
OC3CE
rw |
OC3M
rw |
OC3PE
rw |
OC3FE
rw |
CC3S
rw |
Bits 0-1: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER)..
Bit 2: Output compare 3 fast enable Refer to OC1FE description..
Bit 3: Output compare 3 preload enable Refer to OC1PE description..
Bits 4-6: OC3M[2:0]: Output compare 3 mode Refer to OC1M[3:0] description..
Bit 7: Output compare 3 clear enable Refer to OC1CE description..
Bits 8-9: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER)..
Bit 10: Output compare 4 fast enable Refer to OC1FE description..
Bit 11: Output compare 4 preload enable Refer to OC1PE description..
Bits 12-14: OC4M[2:0]: Output compare 4 mode Refer to OC3M[3:0] description..
Bit 15: Output compare 4 clear enable Refer to OC1CE description..
Bit 16: OC3M[3].
Bit 24: OC4M[3].
TIM1 capture/compare enable register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/19 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC6P
rw |
CC6E
rw |
CC5P
rw |
CC5E
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CC4NP
rw |
CC4P
rw |
CC4E
rw |
CC3NP
rw |
CC3NE
rw |
CC3P
rw |
CC3E
rw |
CC2NP
rw |
CC2NE
rw |
CC2P
rw |
CC2E
rw |
CC1NP
rw |
CC1NE
rw |
CC1P
rw |
CC1E
rw |
Bit 0: Capture/Compare 1 output enable When CC1 channel is configured as output, the OC1 level depends on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits, regardless of the CC1E bits state. Refer to Table1119 for details. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated..
Bit 1: Capture/Compare 1 output polarity When CC1 channel is configured as input, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). CC1NP=1, CC1P=1: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. CC1NP=1, CC1P=0: The configuration is reserved, it must not be used. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated..
Bit 2: Capture/Compare 1 complementary output enable On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated..
Bit 3: Capture/Compare 1 complementary output polarity CC1 channel configured as output: CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (channel configured as output). On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated..
Bit 4: Capture/Compare 2 output enable Refer to CC1E description.
Bit 5: Capture/Compare 2 output polarity Refer to CC1P description.
Bit 6: Capture/Compare 2 complementary output enable Refer to CC1NE description.
Bit 7: Capture/Compare 2 complementary output polarity Refer to CC1NP description.
Bit 8: Capture/Compare 3 output enable Refer to CC1E description.
Bit 9: Capture/Compare 3 output polarity Refer to CC1P description.
Bit 10: Capture/Compare 3 complementary output enable Refer to CC1NE description.
Bit 11: Capture/Compare 3 complementary output polarity Refer to CC1NP description.
Bit 12: Capture/Compare 4 output enable Refer to CC1E description.
Bit 13: Capture/Compare 4 output polarity Refer to CC1P description.
Bit 15: Capture/Compare 4 complementary output polarity Refer to CC1NP description.
Bit 16: Capture/Compare 5 output enable Refer to CC1E description.
Bit 17: Capture/Compare 5 output polarity Refer to CC1P description.
Bit 20: Capture/Compare 6 output enable Refer to CC1E description.
Bit 21: Capture/Compare 6 output polarity Refer to CC1P description.
TIM1 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/2 fields covered.
TIM1 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
Bits 0-15: Prescaler value The counter clock frequency (CK_CNT) is equal to f<sub>CK_PSC</sub> / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in reset mode)..
TIM1 auto-reload register
Offset: 0x2c, size: 16, reset: 0x0000FFFF, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
TIM1 repetition counter register
Offset: 0x30, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
Bits 0-15: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to: the number of PWM periods in edge-aligned mode the number of half PWM period in center-aligned mode..
TIM1 capture/compare register 1
Offset: 0x34, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
Bits 0-15: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1 is configured as input: CR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1 register is read-only and cannot be programmed..
TIM1 capture/compare register 2
Offset: 0x38, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR2
rw |
Bits 0-15: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). The TIMx_CCR2 register is read-only and cannot be programmed..
TIM1 capture/compare register 3
Offset: 0x3c, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR3
rw |
Bits 0-15: Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). The TIMx_CCR3 register is read-only and cannot be programmed..
TIM1 capture/compare register 4
Offset: 0x40, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR4
rw |
Bits 0-15: Capture/Compare value If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. If channel CC4 is configured as input: CCR4 is the counter value transferred by the last input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be programmed..
TIM1 break and dead-time register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
0/16 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BK2BID
rw |
BKBID
rw |
BK2DSRM
rw |
BKDSRM
rw |
BK2P
rw |
BK2E
rw |
BK2F
rw |
BKF
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MOE
rw |
AOE
rw |
BKP
rw |
BKE
rw |
OSSR
rw |
OSSI
rw |
LOCK
rw |
DTG
rw |
Bits 0-7: Dead-time generator setup.
Bits 8-9: Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset..
Bit 10: Off-state selection for Idle mode This bit is used when MOE=0 due to a break event or by a software write, on channels configured as outputs. See OC/OCN enable description for more details (Section122.4.11: TIM1 capture/compare enable register (TIM1_CCER)). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 11: Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section122.4.11: TIM1 capture/compare enable register (TIM1_CCER)). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 12: Break enable This bit enables the complete break protection (including all sources connected to bk_acth and BRK sources, as per Figure1152: Break and Break2 circuitry overview). Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 13: Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 14: Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 15: Main output enable This bit is cleared asynchronously by hardware as soon as one of the break inputs is active (BRK or BRK2). It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. In response to a break event or if MOE is written to 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. See OC/OCN enable description for more details (Section122.4.11: TIM1 capture/compare enable register (TIM1_CCER))..
Bits 16-19: Break filter This bit-field defines the frequency used to sample BRK input and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bits 20-23: Break 2 filter This bit-field defines the frequency used to sample BRK2 input and the length of the digital filter applied to BRK2. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 24: Break 2 enable Note: The BRK2 must only be used with OSSR = OSSI = 1. Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 25: Break 2 polarity Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 26: Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 27: Break2 Disarm Refer to BKDSRM description.
Bit 28: Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective..
Bit 29: Break2 bidirectional Refer to BKBID description.
TIM1 DMA control register
Offset: 0x48, size: 16, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-4: DMA base address This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: ....
Bits 8-12: DMA burst length This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers. Transfers can be in half-words or in bytes (see example below). ... Example: Let us consider the following transfer: DBL = 7 bytes & DBA = TIMx_CR1. If DBL = 7 bytes and DBA = TIMx_CR1 represents the address of the byte to be transferred, the address of the transfer should be given by the following equation: (TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL In this example, 7 bytes are added to (TIMx_CR1 address) + DBA, which gives us the address from/to which the data is copied. In this case, the transfer is done to 7 registers starting from the following address: (TIMx_CR1 address) + DBA According to the configuration of the DMA Data Size, several cases may occur: If the DMA Data Size is configured in half-words, 16-bit data is transferred to each of the 7 registers. If the DMA Data Size is configured in bytes, the data is also transferred to 7 registers: the first register contains the first MSB byte, the second register, the first LSB byte and so on. So with the transfer Timer, one also has to specify the size of data transferred by DMA..
TIM1 DMA address for full transfer
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAB
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DMAB
rw |
Bits 0-31: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR)..
TIM1 option register 1
Offset: 0x50, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OCREF_CLR
rw |
TIM1 capture/compare mode register 3
Offset: 0x54, size: 32, reset: 0x00000000, access: Unspecified
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC6M_1
rw |
OC5M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC6CE
rw |
OC6M
rw |
OC6PE
rw |
OC6FE
rw |
OC5CE
rw |
OC5M
rw |
OC5PE
rw |
OC5FE
rw |
Bit 2: Output compare 5 fast enable Refer to OC1FE description..
Bit 3: Output compare 5 preload enable Refer to OC1PE description..
Bits 4-6: OC5M[0]: Output compare 5 mode Refer to OC1M description..
Bit 7: Output compare 5 clear enable Refer to OC1CE description..
Bit 10: Output compare 6 fast enable Refer to OC1FE description..
Bit 11: Output compare 6 preload enable Refer to OC1PE description..
Bits 12-14: OC6M[0]: Output compare 6 mode Refer to OC1M description..
Bit 15: Output compare 6 clear enable Refer to OC1CE description..
Bit 16: OC5M[3].
Bit 24: OC6M[3].
TIM1 capture/compare register 5
Offset: 0x58, size: 32, reset: 0x00000000, access: Unspecified
0/4 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GC5C3
rw |
GC5C2
rw |
GC5C1
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CCR5
rw |
Bits 0-15: Capture/Compare 5 value CCR5 is the value to be loaded in the actual capture/compare 5 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC5PE). Else the preload value is copied in the active capture/compare 5 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC5 output..
Bit 29: Group Channel 5 and Channel 1 Distortion on Channel 1 output: This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals..
Bit 30: Group Channel 5 and Channel 2 Distortion on Channel 2 output: This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals..
Bit 31: Group Channel 5 and Channel 3 Distortion on Channel 3 output: This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR2). Note: it is also possible to apply this distortion on combined PWM signals..
TIM1 capture/compare register 6
Offset: 0x5c, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR6
rw |
Bits 0-15: Capture/Compare 6 value CCR6 is the value to be loaded in the actual capture/compare 6 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC6PE). Else the preload value is copied in the active capture/compare 6 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC6 output..
TIM1 alternate function option register 1
Offset: 0x60, size: 32, reset: 0x00000001, access: Unspecified
0/7 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ETRSEL
rw |
|||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ETRSEL
rw |
BKCMP2P
rw |
BKCMP1P
rw |
BKINP
rw |
BKCMP2E
rw |
BKCMP1E
rw |
BKINE
rw |
Bit 0: BRK BKIN input enable This bit enables the BKIN alternate function input for the timers BRK input. BKIN input is ORed with the other BRK sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 1: BRK COMP1 enable This bit enables the COMP1 for the timers BRK input. COMP1 output is ORed with the other BRK sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 2: BRK COMP2 enable This bit enables the COMP2 for the timers BRK input. COMP2 output is ORed with the other BRK sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 9: BRK BKIN input polarity This bit selects the BKIN alternate function input sensitivity. It must be programmed together with the BKP polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 10: BRK COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 11: BRK COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bits 14-17: ETR source selection These bits select the ETR input source. Others: Reserved Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
TIM1 Alternate function register 2
Offset: 0x64, size: 32, reset: 0x00000001, access: Unspecified
0/6 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BK2CMP2P
rw |
BK2CMP1P
rw |
BK2INP
rw |
BK2CMP2E
rw |
BK2CMP1E
rw |
BK2INE
rw |
Bit 0: BRK2 BKIN input enable This bit enables the BKIN2 alternate function input for the timers BRK2 input. BKIN2 input is ORed with the other BRK2 sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 1: BRK2 COMP1 enable This bit enables the COMP1 for the timers BRK2 input. COMP1 output is ORed with the other BRK2 sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 2: BRK2 COMP2 enable This bit enables the COMP2 for the timers BRK2 input. COMP2 output is ORed with the other BRK2 sources. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 9: BRK2 BKIN2 input polarity This bit selects the BKIN2 alternate function input sensitivity. It must be programmed together with the BK2P polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 10: BRK2 COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BK2P polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
Bit 11: BRK2 COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BK2P polarity bit. Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)..
0x40014000: TIM15 address block description
1/96 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM15_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM15_CR2 | ||||||||||||||||||||||||||||||||
0x8 | TIM15_SMCR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM15_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM15_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM15_EGR | ||||||||||||||||||||||||||||||||
0x18 | TIM15_CCMR1 | ||||||||||||||||||||||||||||||||
0x18 | TIM15_CCMR1_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x20 (16-bit) | TIM15_CCER | ||||||||||||||||||||||||||||||||
0x24 | TIM15_CNT | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM15_PSC | ||||||||||||||||||||||||||||||||
0x2c (16-bit) | TIM15_ARR | ||||||||||||||||||||||||||||||||
0x30 (16-bit) | TIM15_RCR | ||||||||||||||||||||||||||||||||
0x34 (16-bit) | TIM15_CCR1 | ||||||||||||||||||||||||||||||||
0x38 (16-bit) | TIM15_CCR2 | ||||||||||||||||||||||||||||||||
0x44 | TIM15_BDTR | ||||||||||||||||||||||||||||||||
0x48 (16-bit) | TIM15_DCR | ||||||||||||||||||||||||||||||||
0x4c (16-bit) | TIM15_DMAR | ||||||||||||||||||||||||||||||||
0x60 | TIM15_AF1 | ||||||||||||||||||||||||||||||||
0x68 | TIM15_TISEL |
TIM15 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: read-write
0/7 fields covered.
TIM15 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: read-write
0/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OIS2
rw |
OIS1N
rw |
OIS1
rw |
TI1S
rw |
MMS
rw |
CCDS
rw |
CCUS
rw |
CCPC
rw |
Bit 0: Capture/compare preloaded control.
Bit 2: Capture/compare control update selection.
Bit 3: Capture/compare DMA selection.
Bits 4-6: Master mode selection.
Bit 7: TI1 selection.
Bit 8: Output Idle state 1 (OC1 output).
Bit 9: Output Idle state 1 (OC1N output).
Bit 10: Output idle state 2 (OC2 output).
TIM15 slave mode control register
Offset: 0x8, size: 32, reset: 0x00000000, access: read-write
0/5 fields covered.
TIM15 DMA/interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: read-write
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDE
rw |
COMDE
rw |
CC1DE
rw |
UDE
rw |
BIE
rw |
TIE
rw |
COMIE
rw |
CC2IE
rw |
CC1IE
rw |
UIE
rw |
Bit 0: Update interrupt enable.
Bit 1: Capture/Compare 1 interrupt enable.
Bit 2: Capture/Compare 2 interrupt enable.
Bit 5: COM interrupt enable.
Bit 6: Trigger interrupt enable.
Bit 7: Break interrupt enable.
Bit 8: Update DMA request enable.
Bit 9: Capture/Compare 1 DMA request enable.
Bit 13: COM DMA request enable.
Bit 14: Trigger DMA request enable.
TIM15 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: read-write
0/8 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC2OF
rw |
CC1OF
rw |
BIF
rw |
TIF
rw |
COMIF
rw |
CC2IF
rw |
CC1IF
rw |
UIF
rw |
Bit 0: Update interrupt flag.
Bit 1: Capture/Compare 1 interrupt flag.
Bit 2: Capture/Compare 2 interrupt flag.
Bit 5: COM interrupt flag.
Bit 6: Trigger interrupt flag.
Bit 7: Break interrupt flag.
Bit 9: Capture/Compare 1 overcapture flag.
Bit 10: Capture/Compare 2 overcapture flag.
TIM15 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM15 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM15 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC2M_1
rw |
OC1M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC2M
rw |
OC2PE
rw |
OC2FE
rw |
CC2S
rw |
OC1M
rw |
OC1PE
rw |
OC1FE
rw |
CC1S
rw |
Bits 0-1: Capture/Compare 1 selection.
Bit 2: Output Compare 1 fast enable.
Bit 3: Output Compare 1 preload enable.
Bits 4-6: OC1M[2:0]: Output Compare 1 mode.
Bits 8-9: Capture/Compare 2 selection.
Bit 10: Output Compare 2 fast enable.
Bit 11: Output Compare 2 preload enable.
Bits 12-14: OC2M[2:0]: Output Compare 2 mode.
Bit 16: OC1M[3].
Bit 24: OC2M[3].
TIM15 capture/compare enable register
Offset: 0x20, size: 16, reset: 0x00000000, access: read-write
0/7 fields covered.
Bit 0: Capture/Compare 1 output enable.
Bit 1: Capture/Compare 1 output polarity.
Bit 2: Capture/Compare 1 complementary output enable.
Bit 3: Capture/Compare 1 complementary output polarity.
Bit 4: Capture/Compare 2 output enable.
Bit 5: Capture/Compare 2 output polarity.
Bit 7: Capture/Compare 2 complementary output polarity.
TIM15 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
1/2 fields covered.
TIM15 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
TIM15 auto-reload register
Offset: 0x2c, size: 16, reset: 0x0000FFFF, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
TIM15 repetition counter register
Offset: 0x30, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
TIM15 capture/compare register 1
Offset: 0x34, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
TIM15 capture/compare register 2
Offset: 0x38, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR2
rw |
TIM15 break and dead-time register
Offset: 0x44, size: 32, reset: 0x00000000, access: read-write
0/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BKBID
rw |
BKDSRM
rw |
BKF
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MOE
rw |
AOE
rw |
BKP
rw |
BKE
rw |
OSSR
rw |
OSSI
rw |
LOCK
rw |
DTG
rw |
Bits 0-7: Dead-time generator setup.
Bits 8-9: Lock configuration.
Bit 10: Off-state selection for Idle mode.
Bit 11: Off-state selection for Run mode.
Bit 12: Break enable.
Bit 13: Break polarity.
Bit 14: Automatic output enable.
Bit 15: Main output enable.
Bits 16-19: Break filter.
Bit 26: Break Disarm.
Bit 28: Break Bidirectional.
TIM15 DMA control register
Offset: 0x48, size: 16, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM15 DMA address for full transfer
Offset: 0x4c, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAB
rw |
0x40014400: TIM16 address block description
1/66 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM16_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM16_CR2 | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM16_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM16_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM16_EGR | ||||||||||||||||||||||||||||||||
0x18 | TIM16_CCMR1 | ||||||||||||||||||||||||||||||||
0x18 | TIM16_CCMR1_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x20 (16-bit) | TIM16_CCER | ||||||||||||||||||||||||||||||||
0x24 | TIM16_CNT | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM16_PSC | ||||||||||||||||||||||||||||||||
0x2c (16-bit) | TIM16_ARR | ||||||||||||||||||||||||||||||||
0x30 (16-bit) | TIM16_RCR | ||||||||||||||||||||||||||||||||
0x34 (16-bit) | TIM16_CCR1 | ||||||||||||||||||||||||||||||||
0x44 | TIM16_BDTR | ||||||||||||||||||||||||||||||||
0x48 (16-bit) | TIM16_DCR | ||||||||||||||||||||||||||||||||
0x4c (16-bit) | TIM16_DMAR | ||||||||||||||||||||||||||||||||
0x60 | TIM16_AF1 | ||||||||||||||||||||||||||||||||
0x68 | TIM16_TISEL |
TIM16 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: read-write
0/7 fields covered.
TIM16 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: read-write
0/5 fields covered.
TIM16 DMA/interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM16 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: read-write
0/5 fields covered.
TIM16 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: write-only
0/4 fields covered.
TIM16 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/3 fields covered.
TIM16 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/5 fields covered.
TIM16 capture/compare enable register
Offset: 0x20, size: 16, reset: 0x00000000, access: read-write
0/4 fields covered.
TIM16 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
1/2 fields covered.
TIM16 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
TIM16 auto-reload register
Offset: 0x2c, size: 16, reset: 0x0000FFFF, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
TIM16 repetition counter register
Offset: 0x30, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REP
rw |
TIM16 capture/compare register 1
Offset: 0x34, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR1
rw |
TIM16 break and dead-time register
Offset: 0x44, size: 32, reset: 0x00000000, access: read-write
0/11 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BKBID
rw |
BKDSRM
rw |
BKF
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
MOE
rw |
AOE
rw |
BKP
rw |
BKE
rw |
OSSR
rw |
OSSI
rw |
LOCK
rw |
DTG
rw |
Bits 0-7: Dead-time generator setup.
Bits 8-9: Lock configuration.
Bit 10: Off-state selection for Idle mode.
Bit 11: Off-state selection for Run mode.
Bit 12: Break enable.
Bit 13: Break polarity.
Bit 14: Automatic output enable.
Bit 15: Main output enable.
Bits 16-19: Break filter.
Bit 26: Break Disarm.
Bit 28: Break Bidirectional.
TIM16 DMA control register
Offset: 0x48, size: 16, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM16 DMA address for full transfer
Offset: 0x4c, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAB
rw |
TIM16 alternate function register 1
Offset: 0x60, size: 32, reset: 0x00000001, access: read-write
0/6 fields covered.
TIM16 input selection register
Offset: 0x68, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TI1SEL
rw |
0x40000000: TIM2 address block description
0/115 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM2_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM2_CR2 | ||||||||||||||||||||||||||||||||
0x8 | TIM2_SMCR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM2_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM2_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM2_EGR | ||||||||||||||||||||||||||||||||
0x18 | TIM2_CCMR1 | ||||||||||||||||||||||||||||||||
0x18 | TIM2_CCMR1_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x1c | TIM2_CCMR2 | ||||||||||||||||||||||||||||||||
0x1c | TIM2_CCMR2_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x20 (16-bit) | TIM2_CCER | ||||||||||||||||||||||||||||||||
0x24 | TIM2_CNT | ||||||||||||||||||||||||||||||||
0x24 | TIM2_CNT_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM2_PSC | ||||||||||||||||||||||||||||||||
0x2c | TIM2_ARR | ||||||||||||||||||||||||||||||||
0x34 | TIM2_CCR1 | ||||||||||||||||||||||||||||||||
0x38 | TIM2_CCR2 | ||||||||||||||||||||||||||||||||
0x3c | TIM2_CCR3 | ||||||||||||||||||||||||||||||||
0x40 | TIM2_CCR4 | ||||||||||||||||||||||||||||||||
0x48 (16-bit) | TIM2_DCR | ||||||||||||||||||||||||||||||||
0x4c (16-bit) | TIM2_DMAR | ||||||||||||||||||||||||||||||||
0x50 | TIM2_OR1 | ||||||||||||||||||||||||||||||||
0x60 | TIM2_AF1 | ||||||||||||||||||||||||||||||||
0x68 | TIM2_TISEL |
TIM2 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: read-write
0/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UIFREMAP
rw |
CKD
rw |
ARPE
rw |
CMS
rw |
DIR
rw |
OPM
rw |
URS
rw |
UDIS
rw |
CEN
rw |
Bit 0: Counter enable.
Bit 1: Update disable.
Bit 2: Update request source.
Bit 3: One-pulse mode.
Bit 4: Direction.
Bits 5-6: Center-aligned mode selection.
Bit 7: Auto-reload preload enable.
Bits 8-9: Clock division.
Bit 11: UIF status bit remapping.
TIM2 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: read-write
0/3 fields covered.
TIM2 slave mode control register
Offset: 0x8, size: 32, reset: 0x00000000, access: read-write
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS_1
rw |
SMS_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ETP
rw |
ECE
rw |
ETPS
rw |
ETF
rw |
MSM
rw |
TS
rw |
OCCS
rw |
SMS
rw |
Bits 0-2: SMS[2:0]: Slave mode selection.
Bit 3: OCREF clear selection.
Bits 4-6: TS[2:0]: Trigger selection.
Bit 7: Master/Slave mode.
Bits 8-11: External trigger filter.
Bits 12-13: External trigger prescaler.
Bit 14: External clock enable.
Bit 15: External trigger polarity.
Bit 16: SMS[3].
Bits 20-21: TS[4:3].
TIM2 DMA/Interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: read-write
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDE
rw |
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
CC1DE
rw |
UDE
rw |
TIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
CC1IE
rw |
UIE
rw |
Bit 0: Update interrupt enable.
Bit 1: Capture/Compare 1 interrupt enable.
Bit 2: Capture/Compare 2 interrupt enable.
Bit 3: Capture/Compare 3 interrupt enable.
Bit 4: Capture/Compare 4 interrupt enable.
Bit 6: Trigger interrupt enable.
Bit 8: Update DMA request enable.
Bit 9: Capture/Compare 1 DMA request enable.
Bit 10: Capture/Compare 2 DMA request enable.
Bit 11: Capture/Compare 3 DMA request enable.
Bit 12: Capture/Compare 4 DMA request enable.
Bit 14: Trigger DMA request enable.
TIM2 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: read-write
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4OF
rw |
CC3OF
rw |
CC2OF
rw |
CC1OF
rw |
TIF
rw |
CC4IF
rw |
CC3IF
rw |
CC2IF
rw |
CC1IF
rw |
UIF
rw |
Bit 0: Update interrupt flag.
Bit 1: Capture/compare 1 interrupt flag.
Bit 2: Capture/Compare 2 interrupt flag.
Bit 3: Capture/Compare 3 interrupt flag.
Bit 4: Capture/Compare 4 interrupt flag.
Bit 6: Trigger interrupt flag.
Bit 9: Capture/Compare 1 overcapture flag.
Bit 10: Capture/compare 2 overcapture flag.
Bit 11: Capture/Compare 3 overcapture flag.
Bit 12: Capture/Compare 4 overcapture flag.
TIM2 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: write-only
0/6 fields covered.
TIM2 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM2 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC2M_1
rw |
OC1M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC2CE
rw |
OC2M
rw |
OC2PE
rw |
OC2FE
rw |
CC2S
rw |
OC1CE
rw |
OC1M
rw |
OC1PE
rw |
OC1FE
rw |
CC1S
rw |
Bits 0-1: Capture/Compare 1 selection.
Bit 2: Output compare 1 fast enable.
Bit 3: Output compare 1 preload enable.
Bits 4-6: OC1M[2:0]: Output compare 1 mode.
Bit 7: Output compare 1 clear enable.
Bits 8-9: Capture/Compare 2 selection.
Bit 10: Output compare 2 fast enable.
Bit 11: Output compare 2 preload enable.
Bits 12-14: OC2M[2:0]: Output compare 2 mode.
Bit 15: Output compare 2 clear enable.
Bit 16: OC1M[3].
Bit 24: OC2M[3].
TIM2 capture/compare mode register 2
Offset: 0x1c, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM2 capture/compare mode register 2
Offset: 0x1c, size: 32, reset: 0x00000000, access: read-write
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC4M_1
rw |
OC3M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC4CE
rw |
OC4M
rw |
OC4PE
rw |
OC4FE
rw |
CC4S
rw |
OC3CE
rw |
OC3M
rw |
OC3PE
rw |
OC3FE
rw |
CC3S
rw |
Bits 0-1: Capture/Compare 3 selection.
Bit 2: Output compare 3 fast enable.
Bit 3: Output compare 3 preload enable.
Bits 4-6: OC3M[2:0]: Output compare 3 mode.
Bit 7: Output compare 3 clear enable.
Bits 8-9: Capture/Compare 4 selection.
Bit 10: Output compare 4 fast enable.
Bit 11: Output compare 4 preload enable.
Bits 12-14: OC4M[2:0]: Output compare 4 mode.
Bit 15: Output compare 4 clear enable.
Bit 16: OC3M[3].
Bit 24: OC4M[3].
TIM2 capture/compare enable register
Offset: 0x20, size: 16, reset: 0x00000000, access: read-write
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4NP
rw |
CC4P
rw |
CC4E
rw |
CC3NP
rw |
CC3P
rw |
CC3E
rw |
CC2NP
rw |
CC2P
rw |
CC2E
rw |
CC1NP
rw |
CC1P
rw |
CC1E
rw |
Bit 0: Capture/Compare 1 output enable..
Bit 1: Capture/Compare 1 output Polarity..
Bit 3: Capture/Compare 1 output Polarity..
Bit 4: Capture/Compare 2 output enable..
Bit 5: Capture/Compare 2 output Polarity..
Bit 7: Capture/Compare 2 output Polarity..
Bit 8: Capture/Compare 3 output enable..
Bit 9: Capture/Compare 3 output Polarity..
Bit 11: Capture/Compare 3 output Polarity..
Bit 12: Capture/Compare 4 output enable..
Bit 13: Capture/Compare 4 output Polarity..
Bit 15: Capture/Compare 4 output Polarity..
TIM2 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM2 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM2 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
TIM2 auto-reload register
Offset: 0x2c, size: 32, reset: 0xFFFFFFFF, access: read-write
0/1 fields covered.
TIM2 capture/compare register 1
Offset: 0x34, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM2 capture/compare register 2
Offset: 0x38, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM2 capture/compare register 3
Offset: 0x3c, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM2 capture/compare register 4
Offset: 0x40, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM2 DMA control register
Offset: 0x48, size: 16, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM2 DMA address for full transfer
Offset: 0x4c, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAB
rw |
TIM2 option register 1
Offset: 0x50, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OCREF_CLR
rw |
TIM2 alternate function option register 1
Offset: 0x60, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
0x40000400: TIM3 address block description
0/115 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM3_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM3_CR2 | ||||||||||||||||||||||||||||||||
0x8 | TIM3_SMCR | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM3_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM3_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM3_EGR | ||||||||||||||||||||||||||||||||
0x18 | TIM3_CCMR1 | ||||||||||||||||||||||||||||||||
0x18 | TIM3_CCMR1_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x1c | TIM3_CCMR2 | ||||||||||||||||||||||||||||||||
0x1c | TIM3_CCMR2_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x20 (16-bit) | TIM3_CCER | ||||||||||||||||||||||||||||||||
0x24 | TIM3_CNT | ||||||||||||||||||||||||||||||||
0x24 | TIM3_CNT_ALTERNATE1 | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM3_PSC | ||||||||||||||||||||||||||||||||
0x2c | TIM3_ARR | ||||||||||||||||||||||||||||||||
0x34 | TIM3_CCR1 | ||||||||||||||||||||||||||||||||
0x38 | TIM3_CCR2 | ||||||||||||||||||||||||||||||||
0x3c | TIM3_CCR3 | ||||||||||||||||||||||||||||||||
0x40 | TIM3_CCR4 | ||||||||||||||||||||||||||||||||
0x48 (16-bit) | TIM3_DCR | ||||||||||||||||||||||||||||||||
0x4c (16-bit) | TIM3_DMAR | ||||||||||||||||||||||||||||||||
0x50 | TIM3_OR1 | ||||||||||||||||||||||||||||||||
0x60 | TIM3_AF1 | ||||||||||||||||||||||||||||||||
0x68 | TIM3_TISEL |
TIM3 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: read-write
0/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UIFREMAP
rw |
CKD
rw |
ARPE
rw |
CMS
rw |
DIR
rw |
OPM
rw |
URS
rw |
UDIS
rw |
CEN
rw |
Bit 0: Counter enable.
Bit 1: Update disable.
Bit 2: Update request source.
Bit 3: One-pulse mode.
Bit 4: Direction.
Bits 5-6: Center-aligned mode selection.
Bit 7: Auto-reload preload enable.
Bits 8-9: Clock division.
Bit 11: UIF status bit remapping.
TIM3 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: read-write
0/3 fields covered.
TIM3 slave mode control register
Offset: 0x8, size: 32, reset: 0x00000000, access: read-write
0/10 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS_1
rw |
SMS_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ETP
rw |
ECE
rw |
ETPS
rw |
ETF
rw |
MSM
rw |
TS
rw |
OCCS
rw |
SMS
rw |
Bits 0-2: SMS[2:0]: Slave mode selection.
Bit 3: OCREF clear selection.
Bits 4-6: TS[2:0]: Trigger selection.
Bit 7: Master/Slave mode.
Bits 8-11: External trigger filter.
Bits 12-13: External trigger prescaler.
Bit 14: External clock enable.
Bit 15: External trigger polarity.
Bit 16: SMS[3].
Bits 20-21: TS[4:3].
TIM3 DMA/Interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: read-write
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDE
rw |
CC4DE
rw |
CC3DE
rw |
CC2DE
rw |
CC1DE
rw |
UDE
rw |
TIE
rw |
CC4IE
rw |
CC3IE
rw |
CC2IE
rw |
CC1IE
rw |
UIE
rw |
Bit 0: Update interrupt enable.
Bit 1: Capture/Compare 1 interrupt enable.
Bit 2: Capture/Compare 2 interrupt enable.
Bit 3: Capture/Compare 3 interrupt enable.
Bit 4: Capture/Compare 4 interrupt enable.
Bit 6: Trigger interrupt enable.
Bit 8: Update DMA request enable.
Bit 9: Capture/Compare 1 DMA request enable.
Bit 10: Capture/Compare 2 DMA request enable.
Bit 11: Capture/Compare 3 DMA request enable.
Bit 12: Capture/Compare 4 DMA request enable.
Bit 14: Trigger DMA request enable.
TIM3 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: read-write
0/10 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4OF
rw |
CC3OF
rw |
CC2OF
rw |
CC1OF
rw |
TIF
rw |
CC4IF
rw |
CC3IF
rw |
CC2IF
rw |
CC1IF
rw |
UIF
rw |
Bit 0: Update interrupt flag.
Bit 1: Capture/compare 1 interrupt flag.
Bit 2: Capture/Compare 2 interrupt flag.
Bit 3: Capture/Compare 3 interrupt flag.
Bit 4: Capture/Compare 4 interrupt flag.
Bit 6: Trigger interrupt flag.
Bit 9: Capture/Compare 1 overcapture flag.
Bit 10: Capture/compare 2 overcapture flag.
Bit 11: Capture/Compare 3 overcapture flag.
Bit 12: Capture/Compare 4 overcapture flag.
TIM3 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: write-only
0/6 fields covered.
TIM3 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM3 capture/compare mode register 1
Offset: 0x18, size: 32, reset: 0x00000000, access: read-write
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC2M_1
rw |
OC1M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC2CE
rw |
OC2M
rw |
OC2PE
rw |
OC2FE
rw |
CC2S
rw |
OC1CE
rw |
OC1M
rw |
OC1PE
rw |
OC1FE
rw |
CC1S
rw |
Bits 0-1: Capture/Compare 1 selection.
Bit 2: Output compare 1 fast enable.
Bit 3: Output compare 1 preload enable.
Bits 4-6: OC1M[2:0]: Output compare 1 mode.
Bit 7: Output compare 1 clear enable.
Bits 8-9: Capture/Compare 2 selection.
Bit 10: Output compare 2 fast enable.
Bit 11: Output compare 2 preload enable.
Bits 12-14: OC2M[2:0]: Output compare 2 mode.
Bit 15: Output compare 2 clear enable.
Bit 16: OC1M[3].
Bit 24: OC2M[3].
TIM3 capture/compare mode register 2
Offset: 0x1c, size: 32, reset: 0x00000000, access: read-write
0/6 fields covered.
TIM3 capture/compare mode register 2
Offset: 0x1c, size: 32, reset: 0x00000000, access: read-write
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC4M_1
rw |
OC3M_1
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OC4CE
rw |
OC4M
rw |
OC4PE
rw |
OC4FE
rw |
CC4S
rw |
OC3CE
rw |
OC3M
rw |
OC3PE
rw |
OC3FE
rw |
CC3S
rw |
Bits 0-1: Capture/Compare 3 selection.
Bit 2: Output compare 3 fast enable.
Bit 3: Output compare 3 preload enable.
Bits 4-6: OC3M[2:0]: Output compare 3 mode.
Bit 7: Output compare 3 clear enable.
Bits 8-9: Capture/Compare 4 selection.
Bit 10: Output compare 4 fast enable.
Bit 11: Output compare 4 preload enable.
Bits 12-14: OC4M[2:0]: Output compare 4 mode.
Bit 15: Output compare 4 clear enable.
Bit 16: OC3M[3].
Bit 24: OC4M[3].
TIM3 capture/compare enable register
Offset: 0x20, size: 16, reset: 0x00000000, access: read-write
0/12 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC4NP
rw |
CC4P
rw |
CC4E
rw |
CC3NP
rw |
CC3P
rw |
CC3E
rw |
CC2NP
rw |
CC2P
rw |
CC2E
rw |
CC1NP
rw |
CC1P
rw |
CC1E
rw |
Bit 0: Capture/Compare 1 output enable..
Bit 1: Capture/Compare 1 output Polarity..
Bit 3: Capture/Compare 1 output Polarity..
Bit 4: Capture/Compare 2 output enable..
Bit 5: Capture/Compare 2 output Polarity..
Bit 7: Capture/Compare 2 output Polarity..
Bit 8: Capture/Compare 3 output enable..
Bit 9: Capture/Compare 3 output Polarity..
Bit 11: Capture/Compare 3 output Polarity..
Bit 12: Capture/Compare 4 output enable..
Bit 13: Capture/Compare 4 output Polarity..
Bit 15: Capture/Compare 4 output Polarity..
TIM3 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM3 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM3 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
TIM3 auto-reload register
Offset: 0x2c, size: 32, reset: 0xFFFFFFFF, access: read-write
0/1 fields covered.
TIM3 capture/compare register 1
Offset: 0x34, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM3 capture/compare register 2
Offset: 0x38, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM3 capture/compare register 3
Offset: 0x3c, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM3 capture/compare register 4
Offset: 0x40, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
TIM3 DMA control register
Offset: 0x48, size: 16, reset: 0x00000000, access: read-write
0/2 fields covered.
TIM3 DMA address for full transfer
Offset: 0x4c, size: 16, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAB
rw |
TIM3 option register 1
Offset: 0x50, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OCREF_CLR
rw |
TIM3 alternate function option register 1
Offset: 0x60, size: 32, reset: 0x00000000, access: read-write
0/1 fields covered.
0x40001000: TIM6 address block description
1/15 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM6_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM6_CR2 | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM6_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM6_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM6_EGR | ||||||||||||||||||||||||||||||||
0x24 | TIM6_CNT | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM6_PSC | ||||||||||||||||||||||||||||||||
0x2c (16-bit) | TIM6_ARR |
TIM6 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 0: Counter enable Note: Gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs..
Bit 1: Update disable This bit is set and cleared by software to enable/disable UEV event generation. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller Buffered registers are then loaded with their preload values..
Bit 2: Update request source This bit is set and cleared by software to select the UEV event sources. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller.
Bit 3: One-pulse mode.
Bit 7: Auto-reload preload enable.
Bit 11: UIF status bit remapping.
TIM6 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MMS
rw |
Bits 4-6: Master mode selection These bits are used to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR register). Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer..
TIM6 DMA/Interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/2 fields covered.
TIM6 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UIF
rw |
Bit 0: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the TIMx_CR1 register. When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS1=10 and UDIS1=10 in the TIMx_CR1 register..
TIM6 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UG
w |
TIM6 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/2 fields covered.
TIM6 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
Bits 0-15: Prescaler value The counter clock frequency CK_CNT is equal to f<sub>CK_PSC</sub> / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in reset mode)..
TIM6 auto-reload register
Offset: 0x2c, size: 16, reset: 0x0000FFFF, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
0x40001400: TIM7 address block description
1/15 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 (16-bit) | TIM7_CR1 | ||||||||||||||||||||||||||||||||
0x4 (16-bit) | TIM7_CR2 | ||||||||||||||||||||||||||||||||
0xc (16-bit) | TIM7_DIER | ||||||||||||||||||||||||||||||||
0x10 (16-bit) | TIM7_SR | ||||||||||||||||||||||||||||||||
0x14 (16-bit) | TIM7_EGR | ||||||||||||||||||||||||||||||||
0x24 | TIM7_CNT | ||||||||||||||||||||||||||||||||
0x28 (16-bit) | TIM7_PSC | ||||||||||||||||||||||||||||||||
0x2c (16-bit) | TIM7_ARR |
TIM7 control register 1
Offset: 0x0, size: 16, reset: 0x00000000, access: Unspecified
0/6 fields covered.
Bit 0: Counter enable Note: Gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs..
Bit 1: Update disable This bit is set and cleared by software to enable/disable UEV event generation. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller Buffered registers are then loaded with their preload values..
Bit 2: Update request source This bit is set and cleared by software to select the UEV event sources. Counter overflow/underflow Setting the UG bit Update generation through the slave mode controller.
Bit 3: One-pulse mode.
Bit 7: Auto-reload preload enable.
Bit 11: UIF status bit remapping.
TIM7 control register 2
Offset: 0x4, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MMS
rw |
Bits 4-6: Master mode selection These bits are used to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR register). Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer..
TIM7 DMA/Interrupt enable register
Offset: 0xc, size: 16, reset: 0x00000000, access: Unspecified
0/2 fields covered.
TIM7 status register
Offset: 0x10, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UIF
rw |
Bit 0: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the TIMx_CR1 register. When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS1=10 and UDIS1=10 in the TIMx_CR1 register..
TIM7 event generation register
Offset: 0x14, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UG
w |
TIM7 counter
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/2 fields covered.
TIM7 prescaler
Offset: 0x28, size: 16, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSC
rw |
Bits 0-15: Prescaler value The counter clock frequency CK_CNT is equal to f<sub>CK_PSC</sub> / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in reset mode)..
TIM7 auto-reload register
Offset: 0x2c, size: 16, reset: 0x0000FFFF, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARR
rw |
0x40024000: TSC address block description
16/151 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | TSC_CR | ||||||||||||||||||||||||||||||||
0x4 | TSC_IER | ||||||||||||||||||||||||||||||||
0x8 | TSC_ICR | ||||||||||||||||||||||||||||||||
0xc | TSC_ISR | ||||||||||||||||||||||||||||||||
0x10 | TSC_IOHCR | ||||||||||||||||||||||||||||||||
0x18 | TSC_IOASCR | ||||||||||||||||||||||||||||||||
0x20 | TSC_IOSCR | ||||||||||||||||||||||||||||||||
0x28 | TSC_IOCCR | ||||||||||||||||||||||||||||||||
0x30 | TSC_IOGCSR | ||||||||||||||||||||||||||||||||
0x34 | TSC_IOG1CR | ||||||||||||||||||||||||||||||||
0x38 | TSC_IOG2CR | ||||||||||||||||||||||||||||||||
0x3c | TSC_IOG3CR | ||||||||||||||||||||||||||||||||
0x40 | TSC_IOG4CR | ||||||||||||||||||||||||||||||||
0x44 | TSC_IOG5CR | ||||||||||||||||||||||||||||||||
0x48 | TSC_IOG6CR | ||||||||||||||||||||||||||||||||
0x4c | TSC_IOG7CR |
TSC control register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/12 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTPH
rw |
CTPL
rw |
SSD
rw |
SSE
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SSPSC
rw |
PGPSC
rw |
MCV
rw |
IODEF
rw |
SYNCPOL
rw |
AM
rw |
START
rw |
TSCE
rw |
Bit 0: Touch sensing controller enable This bit is set and cleared by software to enable/disable the touch sensing controller. Note: When the touch sensing controller is disabled, TSC registers settings have no effect..
Bit 1: Start a new acquisition This bit is set by software to start a new acquisition. It is cleared by hardware as soon as the acquisition is complete or by software to cancel the ongoing acquisition..
Bit 2: Acquisition mode This bit is set and cleared by software to select the acquisition mode. Note: This bit must not be modified when an acquisition is ongoing..
Bit 3: Synchronization pin polarity This bit is set and cleared by software to select the polarity of the synchronization input pin..
Bit 4: I/O Default mode This bit is set and cleared by software. It defines the configuration of all the TSC I/Os when there is no ongoing acquisition. When there is an ongoing acquisition, it defines the configuration of all unused I/Os (not defined as sampling capacitor I/O or as channel I/O). Note: This bit must not be modified when an acquisition is ongoing..
Bits 5-7: Max count value These bits are set and cleared by software. They define the maximum number of charge transfer pulses that can be generated before a max count error is generated. Note: These bits must not be modified when an acquisition is ongoing..
Bits 12-14: Pulse generator prescaler These bits are set and cleared by software.They select the AHB clock divider used to generate the pulse generator clock (PGCLK). Note: These bits must not be modified when an acquisition is ongoing. Note: Some configurations are forbidden. Refer to the Section119.4.4: Charge transfer acquisition sequence for details..
Bit 15: Spread spectrum prescaler This bit is set and cleared by software. It selects the AHB clock divider used to generate the spread spectrum clock (SSCLK). Note: This bit must not be modified when an acquisition is ongoing..
Bit 16: Spread spectrum enable This bit is set and cleared by software to enable/disable the spread spectrum feature. Note: This bit must not be modified when an acquisition is ongoing..
Bits 17-23: Spread spectrum deviation These bits are set and cleared by software. They define the spread spectrum deviation which consists in adding a variable number of periods of the SSCLK clock to the charge transfer pulse high state. ... Note: These bits must not be modified when an acquisition is ongoing..
Bits 24-27: Charge transfer pulse low These bits are set and cleared by software. They define the duration of the low state of the charge transfer pulse (transfer of charge from C<sub>X</sub> to C<sub>S</sub>). ... Note: These bits must not be modified when an acquisition is ongoing. Note: Some configurations are forbidden. Refer to the Section119.4.4: Charge transfer acquisition sequence for details..
Bits 28-31: Charge transfer pulse high These bits are set and cleared by software. They define the duration of the high state of the charge transfer pulse (charge of C<sub>X</sub>). ... Note: These bits must not be modified when an acquisition is ongoing..
TSC interrupt enable register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
TSC interrupt clear register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bit 0: End of acquisition interrupt clear This bit is set by software to clear the end of acquisition flag and it is cleared by hardware when the flag is reset. Writing a 0 has no effect..
Bit 1: Max count error interrupt clear This bit is set by software to clear the max count error flag and it is cleared by hardware when the flag is reset. Writing a 0 has no effect..
TSC interrupt status register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
2/2 fields covered.
Bit 0: End of acquisition flag This bit is set by hardware when the acquisition of all enabled group is complete (all GxS bits of all enabled analog I/O groups are set or when a max count error is detected). It is cleared by software writing 1 to the bit EOAIC of the TSC_ICR register..
Bit 1: Max count error flag This bit is set by hardware as soon as an analog I/O group counter reaches the max count value specified. It is cleared by software writing 1 to the bit MCEIC of the TSC_ICR register..
TSC I/O hysteresis control register
Offset: 0x10, size: 32, reset: 0xFFFFFFFF, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G7_IO4
rw |
G7_IO3
rw |
G7_IO2
rw |
G7_IO1
rw |
G6_IO4
rw |
G6_IO3
rw |
G6_IO2
rw |
G6_IO1
rw |
G5_IO4
rw |
G5_IO3
rw |
G5_IO2
rw |
G5_IO1
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
G4_IO4
rw |
G4_IO3
rw |
G4_IO2
rw |
G4_IO1
rw |
G3_IO4
rw |
G3_IO3
rw |
G3_IO2
rw |
G3_IO1
rw |
G2_IO4
rw |
G2_IO3
rw |
G2_IO2
rw |
G2_IO1
rw |
G1_IO4
rw |
G1_IO3
rw |
G1_IO2
rw |
G1_IO1
rw |
Bit 0: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 1: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 2: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 3: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 4: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 5: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 6: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 7: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 8: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 9: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 10: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 11: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 12: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 13: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 14: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 15: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 16: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 17: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 18: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 19: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 20: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 21: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 22: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 23: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 24: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 25: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 26: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 27: Gx_IOy Schmitt trigger hysteresis mode These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger hysteresis. Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is (even if controlled by standard GPIO registers)..
TSC I/O analog switch control register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G7_IO4
rw |
G7_IO3
rw |
G7_IO2
rw |
G7_IO1
rw |
G6_IO4
rw |
G6_IO3
rw |
G6_IO2
rw |
G6_IO1
rw |
G5_IO4
rw |
G5_IO3
rw |
G5_IO2
rw |
G5_IO1
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
G4_IO4
rw |
G4_IO3
rw |
G4_IO2
rw |
G4_IO1
rw |
G3_IO4
rw |
G3_IO3
rw |
G3_IO2
rw |
G3_IO1
rw |
G2_IO4
rw |
G2_IO3
rw |
G2_IO2
rw |
G2_IO1
rw |
G1_IO4
rw |
G1_IO3
rw |
G1_IO2
rw |
G1_IO1
rw |
Bit 0: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 1: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 2: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 3: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 4: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 5: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 6: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 7: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 8: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 9: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 10: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 11: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 12: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 13: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 14: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 15: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 16: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 17: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 18: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 19: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 20: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 21: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 22: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 23: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 24: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 25: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 26: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
Bit 27: Gx_IOy analog switch enable These bits are set and cleared by software to enable/disable the Gx_IOy analog switch. Note: These bits control the I/O analog switch whatever the I/O control mode is (even if controlled by standard GPIO registers)..
TSC I/O sampling control register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G7_IO4
rw |
G7_IO3
rw |
G7_IO2
rw |
G7_IO1
rw |
G6_IO4
rw |
G6_IO3
rw |
G6_IO2
rw |
G6_IO1
rw |
G5_IO4
rw |
G5_IO3
rw |
G5_IO2
rw |
G5_IO1
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
G4_IO4
rw |
G4_IO3
rw |
G4_IO2
rw |
G4_IO1
rw |
G3_IO4
rw |
G3_IO3
rw |
G3_IO2
rw |
G3_IO1
rw |
G2_IO4
rw |
G2_IO3
rw |
G2_IO2
rw |
G2_IO1
rw |
G1_IO4
rw |
G1_IO3
rw |
G1_IO2
rw |
G1_IO1
rw |
Bit 0: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 1: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 2: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 3: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 4: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 5: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 6: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 7: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 8: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 9: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 10: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 11: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 12: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 13: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 14: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 15: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 16: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 17: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 18: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 19: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 20: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 21: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 22: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 23: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 24: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 25: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 26: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 27: Gx_IOy sampling mode These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor I/O. Only one I/O per analog I/O group must be defined as sampling capacitor. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
TSC I/O channel control register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G7_IO4
rw |
G7_IO3
rw |
G7_IO2
rw |
G7_IO1
rw |
G6_IO4
rw |
G6_IO3
rw |
G6_IO2
rw |
G6_IO1
rw |
G5_IO4
rw |
G5_IO3
rw |
G5_IO2
rw |
G5_IO1
rw |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
G4_IO4
rw |
G4_IO3
rw |
G4_IO2
rw |
G4_IO1
rw |
G3_IO4
rw |
G3_IO3
rw |
G3_IO2
rw |
G3_IO1
rw |
G2_IO4
rw |
G2_IO3
rw |
G2_IO2
rw |
G2_IO1
rw |
G1_IO4
rw |
G1_IO3
rw |
G1_IO2
rw |
G1_IO1
rw |
Bit 0: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 1: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 2: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 3: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 4: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 5: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 6: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 7: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 8: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 9: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 10: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 11: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 12: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 13: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 14: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 15: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 16: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 17: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 18: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 19: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 20: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 21: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 22: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 23: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 24: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 25: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 26: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
Bit 27: Gx_IOy channel mode These bits are set and cleared by software to configure the Gx_IOy as a channel I/O. Note: These bits must not be modified when an acquisition is ongoing. Note: During the acquisition phase and even if the TSC peripheral alternate function is not enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch is automatically controlled by the touch sensing controller..
TSC I/O group control status register
Offset: 0x30, size: 32, reset: 0x00000000, access: Unspecified
7/14 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G7S
r |
G6S
r |
G5S
r |
G4S
r |
G3S
r |
G2S
r |
G1S
r |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
G7E
rw |
G6E
rw |
G5E
rw |
G4E
rw |
G3E
rw |
G2E
rw |
G1E
rw |
Bit 0: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 1: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 2: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 3: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 4: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 5: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 6: Analog I/O group x enable These bits are set and cleared by software to enable/disable the acquisition (counter is counting) on the corresponding analog I/O group x..
Bit 16: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 17: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 18: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 19: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 20: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 21: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
Bit 22: Analog I/O group x status These bits are set by hardware when the acquisition on the corresponding enabled analog I/O group x is complete. They are cleared by hardware when a new acquisition is started. Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O groups are not set..
TSC I/O group 1 counter register
Offset: 0x34, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 2 counter register
Offset: 0x38, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 3 counter register
Offset: 0x3c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 4 counter register
Offset: 0x40, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 5 counter register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 6 counter register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
TSC I/O group 7 counter register
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNT
r |
0x40013800: USART address block description
53/171 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | USART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | USART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | USART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | USART_CR3 | ||||||||||||||||||||||||||||||||
0xc | USART_BRR | ||||||||||||||||||||||||||||||||
0x10 | USART_GTPR | ||||||||||||||||||||||||||||||||
0x14 | USART_RTOR | ||||||||||||||||||||||||||||||||
0x18 | USART_RQR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | USART_ICR | ||||||||||||||||||||||||||||||||
0x24 | USART_RDR | ||||||||||||||||||||||||||||||||
0x28 | USART_TDR | ||||||||||||||||||||||||||||||||
0x2c | USART_PRESC |
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: None.
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
USART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
RTOEN
rw |
ABRMOD
rw |
ABREN
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
LINEN
rw |
STOP
rw |
CLKEN
rw |
CPOL
rw |
CPHA
rw |
LBCL
rw |
LBDIE
rw |
LBDL
rw |
ADDM7
rw |
DIS_NSS
rw |
SLVEN
rw |
Bit 0: Synchronous Slave mode enable When the SLVEN bit is set, the Synchronous slave mode is enabled. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: When the DIS_NSS bit is set, the NSS pin input is ignored. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the USART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bit 5: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. This bit can only be written when the USART is disabled (UE=0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 8: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the CK pin in Synchronous mode. The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bit in the USART_CR1 register. This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: Clock phase This bit is used to select the phase of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure1233 and Figure1234) This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: Clock polarity This bit enables the user to select the polarity of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Clock enable This bit enables the user to enable the CK pin. This bit can only be written when the USART is disabled (UE=0). Note: If neither Synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826. In Smartcard mode, in order to provide correctly the CK clock to the smartcard, the steps below must be respected: UE = 0 SCEN = 1 GTPR configuration CLKEN= 1 Note: UE = 1.
Bits 12-13: stop bits These bits are used for programming the stop bits. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 14: LIN mode enable This bit is set and cleared by software. The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the SBKRQ bit in the USART_CR1 register, and to detect LIN Sync breaks. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 20: Auto baud rate enable This bit is set and cleared by software. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-22: Auto baud rate mode These bits are set and cleared by software. This bitfield can only be written when ABREN = 0 or the USART is disabled (UE=0). Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: Receiver timeout enable This bit is set and cleared by software. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 24-31: Address of the USART node These bits give the address of the USART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
USART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/25 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TCBGTIE
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
SCARCNT
rw |
|||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
ONEBIT
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
SCEN
rw |
NACK
rw |
HDSEL
rw |
IRLP
rw |
IREN
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error noise flag or SPI slave underrun error (FE=1 or ORE=1 or NE=1or UDR = 1 in the USART_ISR register)..
Bit 1: IrDA mode enable This bit is set and cleared by software. This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 2: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the USART is disabled (UE=0)..
Bit 4: Smartcard NACK enable This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 5: Smartcard mode enable This bit is used for enabling Smartcard mode. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the USART is disabled (UE=0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS enable This bit can only be written when the USART is disabled (UE=0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: CTS interrupt enable Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: One sample bit method enable This bit enables the user to select the sample method. When the one sample bit method is selected the noise detection flag (NE) is disabled. This bit can only be written when the USART is disabled (UE=0)..
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. When FIFO mode is enabled, the RXFIFO is bypassed and data are written directly in USART_RDR register. Even when FIFO management is enabled, the RXNE flag is to be used. This bit can only be written when the USART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data.
Bit 13: DMA Disable on Reception Error This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 15: Driver enable polarity selection This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 17-19: Smartcard auto-retry count This bitfield specifies the number of retries for transmission and reception in Smartcard mode. In Transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In Reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE/RXFNE and PE bits set). This bitfield must be programmed only when the USART is disabled (UE=0). When the USART is enabled (UE=1), this bitfield may only be written to 0x0, in order to stop retransmission. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bit 24: Transmission Complete before guard time, interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved.
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved.
USART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRR
rw |
USART guard time and prescaler register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-7: Prescaler value PSC[7:0] = IrDA Normal and Low-power baud rate This bitfield is used for programming the prescaler for dividing the USART source clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): ... PSC[4:0]: Prescaler value This bitfield is used for programming the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: ... This bitfield can only be written when the USART is disabled (UE=0). Note: Bits [7:5] must be kept cleared if Smartcard mode is used. Note: This bitfield is reserved and forced by hardware to 0 when the Smartcard and IrDA modes are not supported. Refer to Section131.4: USART implementation on page1826..
Bits 8-15: Guard time value This bitfield is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bitfield can only be written when the USART is disabled (UE=0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receiver timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLEN
rw |
RTO
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RTO
rw |
Bits 0-23: Receiver timeout value This bitfield gives the Receiver timeout value in terms of number of bit duration. In Standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard chapter for more details. In the standard, the CWT/BWT measurement is done starting from the start bit of the last received character. Note: This value must only be programmed once per received character..
Bits 24-31: Block Length This bitfield gives the Block length in Smartcard T=1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0 -> 0 information characters + LEC BLEN = 1 -> 0 information characters + CRC BLEN = 255 -> 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE=0 (TXFE = 0 in case FIFO mode is enabled). This bitfield can be used also in other modes. In this case, the Block length counter is reset when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block..
USART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: Auto baud rate request Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and requests an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: When the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the USART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit empties the entire receive FIFO i.e. clears the bit RXFNE. This enables to discard the received data without reading them, and avoid an overrun condition..
Bit 4: Transmit data flush request When FIFO mode is disabled, writing 1 to this bit sets the TXE flag. This enables to discard the transmit data. This bit must be used only in Smartcard mode, when data have not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. When FIFO is enabled, TXFRQ bit is set to flush the whole FIFO. This sets the TXFE flag (Transmit FIFO empty, bit 23 in the USART_ISR register). Flushing the Transmit FIFO is supported in both UART and Smartcard modes. Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
TCBGT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, meaning that data can be read from the USART_RDR register. Every read operation from the USART_RDR frees a location in the RXFIFO. RXFNE is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXE/TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full meaning that data can be written in the USART_TDR. Every write operation to the USART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the USART_TDR. An interrupt is generated if the TXFNFIE bit =1 in the USART_CR1 register. Note: The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE is set at the same time). Note: This bit is used during single buffer transmission..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXFNE is also set, generating an interrupt if RXFNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXFNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the USART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the USART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the USART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the USART_CR1 register..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the threshold programmed in RXFTCFG in USART_CR3 register is reached. This means that there are (RXFTCFG - 1) data in the Receive FIFO and one data in the USART_RDR register. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the USART_CR3 register. Note: When the RXFTCFG threshold is configured to 101, RXFT flag is set if 16 data are available i.e. 15 data in the RXFIFO and 1 data in the USART_RDR. Consequently, the 17th received data does not cause an overrun error. The overrun error occurs after receiving the 18th data..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG of USART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the USART_CR3 register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
24/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCBGT
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXNE=1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the USART_RDR shift register has been transferred to the USART_RDR register. It is cleared by reading from the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the USART_TDR register has been transferred into the shift register. It is cleared by writing to the USART_TDR register. The TXE flag can also be set by writing 1 to the TXFRQ in the USART_RQR register, in order to discard the data (only in Smartcard T=0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE is also set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
USART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
UDRCF
w |
EOBCF
w |
RTOCF
w |
CTSCF
w |
LBDCF
w |
TCBGTCF
w |
TCCF
w |
TXFECF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the USART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register..
Bit 5: TXFIFO empty clear flag Writing 1 to this bit clears the TXFE flag in the USART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART_ISR register..
Bit 7: Transmission complete before Guard time clear flag Writing 1 to this bit clears the TCBGT flag in the USART_ISR register..
Bit 8: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 12: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun clear flag Writing 1 to this bit clears the UDRF flag in the USART_ISR register. Note: If the USART does not support SPI slave mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826.
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1227). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
USART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The USART_TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1227). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
USART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40004400: USART address block description
53/171 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | USART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | USART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | USART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | USART_CR3 | ||||||||||||||||||||||||||||||||
0xc | USART_BRR | ||||||||||||||||||||||||||||||||
0x10 | USART_GTPR | ||||||||||||||||||||||||||||||||
0x14 | USART_RTOR | ||||||||||||||||||||||||||||||||
0x18 | USART_RQR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | USART_ICR | ||||||||||||||||||||||||||||||||
0x24 | USART_RDR | ||||||||||||||||||||||||||||||||
0x28 | USART_TDR | ||||||||||||||||||||||||||||||||
0x2c | USART_PRESC |
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: None.
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
USART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
RTOEN
rw |
ABRMOD
rw |
ABREN
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
LINEN
rw |
STOP
rw |
CLKEN
rw |
CPOL
rw |
CPHA
rw |
LBCL
rw |
LBDIE
rw |
LBDL
rw |
ADDM7
rw |
DIS_NSS
rw |
SLVEN
rw |
Bit 0: Synchronous Slave mode enable When the SLVEN bit is set, the Synchronous slave mode is enabled. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: When the DIS_NSS bit is set, the NSS pin input is ignored. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the USART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bit 5: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. This bit can only be written when the USART is disabled (UE=0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 8: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the CK pin in Synchronous mode. The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bit in the USART_CR1 register. This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: Clock phase This bit is used to select the phase of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure1233 and Figure1234) This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: Clock polarity This bit enables the user to select the polarity of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Clock enable This bit enables the user to enable the CK pin. This bit can only be written when the USART is disabled (UE=0). Note: If neither Synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826. In Smartcard mode, in order to provide correctly the CK clock to the smartcard, the steps below must be respected: UE = 0 SCEN = 1 GTPR configuration CLKEN= 1 Note: UE = 1.
Bits 12-13: stop bits These bits are used for programming the stop bits. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 14: LIN mode enable This bit is set and cleared by software. The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the SBKRQ bit in the USART_CR1 register, and to detect LIN Sync breaks. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 20: Auto baud rate enable This bit is set and cleared by software. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-22: Auto baud rate mode These bits are set and cleared by software. This bitfield can only be written when ABREN = 0 or the USART is disabled (UE=0). Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: Receiver timeout enable This bit is set and cleared by software. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 24-31: Address of the USART node These bits give the address of the USART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
USART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/25 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TCBGTIE
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
SCARCNT
rw |
|||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
ONEBIT
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
SCEN
rw |
NACK
rw |
HDSEL
rw |
IRLP
rw |
IREN
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error noise flag or SPI slave underrun error (FE=1 or ORE=1 or NE=1or UDR = 1 in the USART_ISR register)..
Bit 1: IrDA mode enable This bit is set and cleared by software. This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 2: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the USART is disabled (UE=0)..
Bit 4: Smartcard NACK enable This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 5: Smartcard mode enable This bit is used for enabling Smartcard mode. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the USART is disabled (UE=0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS enable This bit can only be written when the USART is disabled (UE=0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: CTS interrupt enable Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: One sample bit method enable This bit enables the user to select the sample method. When the one sample bit method is selected the noise detection flag (NE) is disabled. This bit can only be written when the USART is disabled (UE=0)..
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. When FIFO mode is enabled, the RXFIFO is bypassed and data are written directly in USART_RDR register. Even when FIFO management is enabled, the RXNE flag is to be used. This bit can only be written when the USART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data.
Bit 13: DMA Disable on Reception Error This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 15: Driver enable polarity selection This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 17-19: Smartcard auto-retry count This bitfield specifies the number of retries for transmission and reception in Smartcard mode. In Transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In Reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE/RXFNE and PE bits set). This bitfield must be programmed only when the USART is disabled (UE=0). When the USART is enabled (UE=1), this bitfield may only be written to 0x0, in order to stop retransmission. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bit 24: Transmission Complete before guard time, interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved.
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved.
USART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRR
rw |
USART guard time and prescaler register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-7: Prescaler value PSC[7:0] = IrDA Normal and Low-power baud rate This bitfield is used for programming the prescaler for dividing the USART source clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): ... PSC[4:0]: Prescaler value This bitfield is used for programming the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: ... This bitfield can only be written when the USART is disabled (UE=0). Note: Bits [7:5] must be kept cleared if Smartcard mode is used. Note: This bitfield is reserved and forced by hardware to 0 when the Smartcard and IrDA modes are not supported. Refer to Section131.4: USART implementation on page1826..
Bits 8-15: Guard time value This bitfield is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bitfield can only be written when the USART is disabled (UE=0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receiver timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLEN
rw |
RTO
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RTO
rw |
Bits 0-23: Receiver timeout value This bitfield gives the Receiver timeout value in terms of number of bit duration. In Standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard chapter for more details. In the standard, the CWT/BWT measurement is done starting from the start bit of the last received character. Note: This value must only be programmed once per received character..
Bits 24-31: Block Length This bitfield gives the Block length in Smartcard T=1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0 -> 0 information characters + LEC BLEN = 1 -> 0 information characters + CRC BLEN = 255 -> 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE=0 (TXFE = 0 in case FIFO mode is enabled). This bitfield can be used also in other modes. In this case, the Block length counter is reset when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block..
USART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: Auto baud rate request Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and requests an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: When the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the USART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit empties the entire receive FIFO i.e. clears the bit RXFNE. This enables to discard the received data without reading them, and avoid an overrun condition..
Bit 4: Transmit data flush request When FIFO mode is disabled, writing 1 to this bit sets the TXE flag. This enables to discard the transmit data. This bit must be used only in Smartcard mode, when data have not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. When FIFO is enabled, TXFRQ bit is set to flush the whole FIFO. This sets the TXFE flag (Transmit FIFO empty, bit 23 in the USART_ISR register). Flushing the Transmit FIFO is supported in both UART and Smartcard modes. Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
TCBGT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, meaning that data can be read from the USART_RDR register. Every read operation from the USART_RDR frees a location in the RXFIFO. RXFNE is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXE/TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full meaning that data can be written in the USART_TDR. Every write operation to the USART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the USART_TDR. An interrupt is generated if the TXFNFIE bit =1 in the USART_CR1 register. Note: The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE is set at the same time). Note: This bit is used during single buffer transmission..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXFNE is also set, generating an interrupt if RXFNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXFNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the USART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the USART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the USART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the USART_CR1 register..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the threshold programmed in RXFTCFG in USART_CR3 register is reached. This means that there are (RXFTCFG - 1) data in the Receive FIFO and one data in the USART_RDR register. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the USART_CR3 register. Note: When the RXFTCFG threshold is configured to 101, RXFT flag is set if 16 data are available i.e. 15 data in the RXFIFO and 1 data in the USART_RDR. Consequently, the 17th received data does not cause an overrun error. The overrun error occurs after receiving the 18th data..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG of USART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the USART_CR3 register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
24/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCBGT
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXNE=1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the USART_RDR shift register has been transferred to the USART_RDR register. It is cleared by reading from the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the USART_TDR register has been transferred into the shift register. It is cleared by writing to the USART_TDR register. The TXE flag can also be set by writing 1 to the TXFRQ in the USART_RQR register, in order to discard the data (only in Smartcard T=0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE is also set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
USART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
UDRCF
w |
EOBCF
w |
RTOCF
w |
CTSCF
w |
LBDCF
w |
TCBGTCF
w |
TCCF
w |
TXFECF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the USART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register..
Bit 5: TXFIFO empty clear flag Writing 1 to this bit clears the TXFE flag in the USART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART_ISR register..
Bit 7: Transmission complete before Guard time clear flag Writing 1 to this bit clears the TCBGT flag in the USART_ISR register..
Bit 8: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 12: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun clear flag Writing 1 to this bit clears the UDRF flag in the USART_ISR register. Note: If the USART does not support SPI slave mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826.
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1227). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
USART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The USART_TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1227). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
USART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40004800: USART address block description
53/171 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | USART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | USART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | USART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | USART_CR3 | ||||||||||||||||||||||||||||||||
0xc | USART_BRR | ||||||||||||||||||||||||||||||||
0x10 | USART_GTPR | ||||||||||||||||||||||||||||||||
0x14 | USART_RTOR | ||||||||||||||||||||||||||||||||
0x18 | USART_RQR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | USART_ICR | ||||||||||||||||||||||||||||||||
0x24 | USART_RDR | ||||||||||||||||||||||||||||||||
0x28 | USART_TDR | ||||||||||||||||||||||||||||||||
0x2c | USART_PRESC |
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: None.
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
USART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
RTOEN
rw |
ABRMOD
rw |
ABREN
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
LINEN
rw |
STOP
rw |
CLKEN
rw |
CPOL
rw |
CPHA
rw |
LBCL
rw |
LBDIE
rw |
LBDL
rw |
ADDM7
rw |
DIS_NSS
rw |
SLVEN
rw |
Bit 0: Synchronous Slave mode enable When the SLVEN bit is set, the Synchronous slave mode is enabled. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: When the DIS_NSS bit is set, the NSS pin input is ignored. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the USART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bit 5: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. This bit can only be written when the USART is disabled (UE=0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 8: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the CK pin in Synchronous mode. The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bit in the USART_CR1 register. This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: Clock phase This bit is used to select the phase of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure1233 and Figure1234) This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: Clock polarity This bit enables the user to select the polarity of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Clock enable This bit enables the user to enable the CK pin. This bit can only be written when the USART is disabled (UE=0). Note: If neither Synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826. In Smartcard mode, in order to provide correctly the CK clock to the smartcard, the steps below must be respected: UE = 0 SCEN = 1 GTPR configuration CLKEN= 1 Note: UE = 1.
Bits 12-13: stop bits These bits are used for programming the stop bits. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 14: LIN mode enable This bit is set and cleared by software. The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the SBKRQ bit in the USART_CR1 register, and to detect LIN Sync breaks. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 20: Auto baud rate enable This bit is set and cleared by software. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-22: Auto baud rate mode These bits are set and cleared by software. This bitfield can only be written when ABREN = 0 or the USART is disabled (UE=0). Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: Receiver timeout enable This bit is set and cleared by software. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 24-31: Address of the USART node These bits give the address of the USART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
USART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/25 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TCBGTIE
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
SCARCNT
rw |
|||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
ONEBIT
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
SCEN
rw |
NACK
rw |
HDSEL
rw |
IRLP
rw |
IREN
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error noise flag or SPI slave underrun error (FE=1 or ORE=1 or NE=1or UDR = 1 in the USART_ISR register)..
Bit 1: IrDA mode enable This bit is set and cleared by software. This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 2: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the USART is disabled (UE=0)..
Bit 4: Smartcard NACK enable This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 5: Smartcard mode enable This bit is used for enabling Smartcard mode. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the USART is disabled (UE=0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS enable This bit can only be written when the USART is disabled (UE=0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: CTS interrupt enable Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: One sample bit method enable This bit enables the user to select the sample method. When the one sample bit method is selected the noise detection flag (NE) is disabled. This bit can only be written when the USART is disabled (UE=0)..
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. When FIFO mode is enabled, the RXFIFO is bypassed and data are written directly in USART_RDR register. Even when FIFO management is enabled, the RXNE flag is to be used. This bit can only be written when the USART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data.
Bit 13: DMA Disable on Reception Error This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 15: Driver enable polarity selection This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 17-19: Smartcard auto-retry count This bitfield specifies the number of retries for transmission and reception in Smartcard mode. In Transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In Reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE/RXFNE and PE bits set). This bitfield must be programmed only when the USART is disabled (UE=0). When the USART is enabled (UE=1), this bitfield may only be written to 0x0, in order to stop retransmission. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bit 24: Transmission Complete before guard time, interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved.
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved.
USART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRR
rw |
USART guard time and prescaler register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-7: Prescaler value PSC[7:0] = IrDA Normal and Low-power baud rate This bitfield is used for programming the prescaler for dividing the USART source clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): ... PSC[4:0]: Prescaler value This bitfield is used for programming the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: ... This bitfield can only be written when the USART is disabled (UE=0). Note: Bits [7:5] must be kept cleared if Smartcard mode is used. Note: This bitfield is reserved and forced by hardware to 0 when the Smartcard and IrDA modes are not supported. Refer to Section131.4: USART implementation on page1826..
Bits 8-15: Guard time value This bitfield is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bitfield can only be written when the USART is disabled (UE=0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receiver timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLEN
rw |
RTO
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RTO
rw |
Bits 0-23: Receiver timeout value This bitfield gives the Receiver timeout value in terms of number of bit duration. In Standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard chapter for more details. In the standard, the CWT/BWT measurement is done starting from the start bit of the last received character. Note: This value must only be programmed once per received character..
Bits 24-31: Block Length This bitfield gives the Block length in Smartcard T=1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0 -> 0 information characters + LEC BLEN = 1 -> 0 information characters + CRC BLEN = 255 -> 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE=0 (TXFE = 0 in case FIFO mode is enabled). This bitfield can be used also in other modes. In this case, the Block length counter is reset when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block..
USART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: Auto baud rate request Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and requests an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: When the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the USART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit empties the entire receive FIFO i.e. clears the bit RXFNE. This enables to discard the received data without reading them, and avoid an overrun condition..
Bit 4: Transmit data flush request When FIFO mode is disabled, writing 1 to this bit sets the TXE flag. This enables to discard the transmit data. This bit must be used only in Smartcard mode, when data have not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. When FIFO is enabled, TXFRQ bit is set to flush the whole FIFO. This sets the TXFE flag (Transmit FIFO empty, bit 23 in the USART_ISR register). Flushing the Transmit FIFO is supported in both UART and Smartcard modes. Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
TCBGT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, meaning that data can be read from the USART_RDR register. Every read operation from the USART_RDR frees a location in the RXFIFO. RXFNE is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXE/TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full meaning that data can be written in the USART_TDR. Every write operation to the USART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the USART_TDR. An interrupt is generated if the TXFNFIE bit =1 in the USART_CR1 register. Note: The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE is set at the same time). Note: This bit is used during single buffer transmission..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXFNE is also set, generating an interrupt if RXFNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXFNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the USART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the USART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the USART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the USART_CR1 register..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the threshold programmed in RXFTCFG in USART_CR3 register is reached. This means that there are (RXFTCFG - 1) data in the Receive FIFO and one data in the USART_RDR register. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the USART_CR3 register. Note: When the RXFTCFG threshold is configured to 101, RXFT flag is set if 16 data are available i.e. 15 data in the RXFIFO and 1 data in the USART_RDR. Consequently, the 17th received data does not cause an overrun error. The overrun error occurs after receiving the 18th data..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG of USART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the USART_CR3 register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
24/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCBGT
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXNE=1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the USART_RDR shift register has been transferred to the USART_RDR register. It is cleared by reading from the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the USART_TDR register has been transferred into the shift register. It is cleared by writing to the USART_TDR register. The TXE flag can also be set by writing 1 to the TXFRQ in the USART_RQR register, in order to discard the data (only in Smartcard T=0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE is also set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
USART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
UDRCF
w |
EOBCF
w |
RTOCF
w |
CTSCF
w |
LBDCF
w |
TCBGTCF
w |
TCCF
w |
TXFECF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the USART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register..
Bit 5: TXFIFO empty clear flag Writing 1 to this bit clears the TXFE flag in the USART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART_ISR register..
Bit 7: Transmission complete before Guard time clear flag Writing 1 to this bit clears the TCBGT flag in the USART_ISR register..
Bit 8: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 12: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun clear flag Writing 1 to this bit clears the UDRF flag in the USART_ISR register. Note: If the USART does not support SPI slave mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826.
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1227). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
USART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The USART_TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1227). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
USART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40004c00: USART address block description
53/171 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | USART_CR1 | ||||||||||||||||||||||||||||||||
0x0 | USART_CR1_ALTERNATE | ||||||||||||||||||||||||||||||||
0x4 | USART_CR2 | ||||||||||||||||||||||||||||||||
0x8 | USART_CR3 | ||||||||||||||||||||||||||||||||
0xc | USART_BRR | ||||||||||||||||||||||||||||||||
0x10 | USART_GTPR | ||||||||||||||||||||||||||||||||
0x14 | USART_RTOR | ||||||||||||||||||||||||||||||||
0x18 | USART_RQR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR | ||||||||||||||||||||||||||||||||
0x1c | USART_ISR_ALTERNATE | ||||||||||||||||||||||||||||||||
0x20 | USART_ICR | ||||||||||||||||||||||||||||||||
0x24 | USART_RDR | ||||||||||||||||||||||||||||||||
0x28 | USART_TDR | ||||||||||||||||||||||||||||||||
0x2c | USART_PRESC |
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RXFFIE
rw |
TXFEIE
rw |
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXFNFIE
rw |
TCIE
rw |
RXFNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: RXFIFO not empty interrupt enable This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: TXFIFO not full interrupt enable This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
Bit 30: TXFIFO empty interrupt enable This bit is set and cleared by software..
Bit 31: None.
USART control register 1
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
0/22 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIFOEN
rw |
M1
rw |
EOBIE
rw |
RTOIE
rw |
DEAT
rw |
DEDT
rw |
||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
OVER8
rw |
CMIE
rw |
MME
rw |
M0
rw |
WAKE
rw |
PCE
rw |
PS
rw |
PEIE
rw |
TXEIE
rw |
TCIE
rw |
RXNEIE
rw |
IDLEIE
rw |
TE
rw |
RE
rw |
UESM
rw |
UE
rw |
Bit 0: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. Note: The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. Note: In Smartcard mode, (SCEN = 1), the CK is always available when CLKEN = 1, regardless of the UE bit value..
Bit 1: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. Note: It is recommended to set the UESM bit just before entering low-power mode, and clear it when exiting low-power mode..
Bit 2: Receiver enable This bit enables the receiver. It is set and cleared by software..
Bit 3: Transmitter enable This bit enables the transmitter. It is set and cleared by software. Note: During transmission, a low pulse on the TE bit (0 followed by 1) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. Note: In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts..
Bit 4: IDLE interrupt enable This bit is set and cleared by software..
Bit 5: Receive data register not empty This bit is set and cleared by software..
Bit 6: Transmission complete interrupt enable This bit is set and cleared by software..
Bit 7: Transmit data register empty This bit is set and cleared by software..
Bit 8: PE interrupt enable This bit is set and cleared by software..
Bit 9: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 10: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). This bitfield can only be written when the USART is disabled (UE=0)..
Bit 11: Receiver wake-up method This bit determines the USART wake-up method from Mute mode. It is set or cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 12: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE=0)..
Bit 13: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software..
Bit 14: Character match interrupt enable This bit is set and cleared by software..
Bit 15: Oversampling mode This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared..
Bits 16-20: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-25: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 26: Receiver timeout interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 27: End of Block interrupt enable This bit is set and cleared by software. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 28: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = 00: 1 start bit, 8 Data bits, n Stop bit M[1:0] = 01: 1 start bit, 9 Data bits, n Stop bit M[1:0] = 10: 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE=0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and auto baud rate (0x7F and 0x55 frames detection) are not supported..
Bit 29: FIFO mode enable This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0). Note: FIFO mode can be used on standard UART communication, in SPI Master/Slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes..
USART control register 2
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/20 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADD
rw |
RTOEN
rw |
ABRMOD
rw |
ABREN
rw |
MSBFIRST
rw |
DATAINV
rw |
TXINV
rw |
RXINV
rw |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SWAP
rw |
LINEN
rw |
STOP
rw |
CLKEN
rw |
CPOL
rw |
CPHA
rw |
LBCL
rw |
LBDIE
rw |
LBDL
rw |
ADDM7
rw |
DIS_NSS
rw |
SLVEN
rw |
Bit 0: Synchronous Slave mode enable When the SLVEN bit is set, the Synchronous slave mode is enabled. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: When the DIS_NSS bit is set, the NSS pin input is ignored. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 4: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. This bit can only be written when the USART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively..
Bit 5: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. This bit can only be written when the USART is disabled (UE=0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 8: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the CK pin in Synchronous mode. The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bit in the USART_CR1 register. This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: Clock phase This bit is used to select the phase of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure1233 and Figure1234) This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: Clock polarity This bit enables the user to select the polarity of the clock output on the CK pin in Synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship This bit can only be written when the USART is disabled (UE=0). Note: If Synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Clock enable This bit enables the user to enable the CK pin. This bit can only be written when the USART is disabled (UE=0). Note: If neither Synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826. In Smartcard mode, in order to provide correctly the CK clock to the smartcard, the steps below must be respected: UE = 0 SCEN = 1 GTPR configuration CLKEN= 1 Note: UE = 1.
Bits 12-13: stop bits These bits are used for programming the stop bits. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 14: LIN mode enable This bit is set and cleared by software. The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the SBKRQ bit in the USART_CR1 register, and to detect LIN Sync breaks. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 15: Swap TX/RX pins This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 16: RX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the RX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 17: TX pin active level inversion This bit is set and cleared by software. This enables the use of an external inverter on the TX line. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 18: Binary data inversion This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 19: Most significant bit first This bit is set and cleared by software. This bitfield can only be written when the USART is disabled (UE=0)..
Bit 20: Auto baud rate enable This bit is set and cleared by software. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 21-22: Auto baud rate mode These bits are set and cleared by software. This bitfield can only be written when ABREN = 0 or the USART is disabled (UE=0). Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: Receiver timeout enable This bit is set and cleared by software. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 24-31: Address of the USART node These bits give the address of the USART node in Mute mode or a character code to be recognized in low-power or Run mode: In Mute mode: they are used in multiprocessor communication to wake up from Mute mode with 4-bit/7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. In 4-bit address mark detection, only ADD[3:0] bits are used. In low-power mode: they are used for wake up from low-power mode on character match. When WUS[1:0] is programmed to 0b00 (WUF active on address match), the wake-up from low-power mode is performed when the received character corresponds to the character programmed through ADD[6:0] or ADD[3:0] bitfield (depending on ADDM7 bit), and WUF interrupt is enabled by setting WUFIE bit. The MSB of the character sent by transmitter should be equal to 1. In Run mode with Mute mode inactive (for example, end-of-block detection in ModBus protocol): the whole received character (8 bits) is compared to ADD[7:0] value and CMF flag is set on match. An interrupt is generated if the CMIE bit is set. These bits can only be written when the reception is disabled (RE1=10) or when the USART is disabled (UE1=10)..
USART control register 3
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/25 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFTCFG
rw |
RXFTIE
rw |
RXFTCFG
rw |
TCBGTIE
rw |
TXFTIE
rw |
WUFIE
rw |
WUS1
rw |
WUS0
rw |
SCARCNT
rw |
|||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
DEP
rw |
DEM
rw |
DDRE
rw |
OVRDIS
rw |
ONEBIT
rw |
CTSIE
rw |
CTSE
rw |
RTSE
rw |
DMAT
rw |
DMAR
rw |
SCEN
rw |
NACK
rw |
HDSEL
rw |
IRLP
rw |
IREN
rw |
EIE
rw |
Bit 0: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error noise flag or SPI slave underrun error (FE=1 or ORE=1 or NE=1or UDR = 1 in the USART_ISR register)..
Bit 1: IrDA mode enable This bit is set and cleared by software. This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 2: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 3: Half-duplex selection Selection of Single-wire Half-duplex mode This bit can only be written when the USART is disabled (UE=0)..
Bit 4: Smartcard NACK enable This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 5: Smartcard mode enable This bit is used for enabling Smartcard mode. This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 6: DMA enable receiver This bit is set/reset by software.
Bit 7: DMA enable transmitter This bit is set/reset by software.
Bit 8: RTS enable This bit can only be written when the USART is disabled (UE=0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS enable This bit can only be written when the USART is disabled (UE=0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 10: CTS interrupt enable Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: One sample bit method enable This bit enables the user to select the sample method. When the one sample bit method is selected the noise detection flag (NE) is disabled. This bit can only be written when the USART is disabled (UE=0)..
Bit 12: Overrun Disable This bit is used to disable the receive overrun detection. the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. When FIFO mode is enabled, the RXFIFO is bypassed and data are written directly in USART_RDR register. Even when FIFO management is enabled, the RXNE flag is to be used. This bit can only be written when the USART is disabled (UE=0). Note: This control bit enables checking the communication flow w/o reading the data.
Bit 13: DMA Disable on Reception Error This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error..
Bit 14: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section131.4: USART implementation on page1826..
Bit 15: Driver enable polarity selection This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 17-19: Smartcard auto-retry count This bitfield specifies the number of retries for transmission and reception in Smartcard mode. In Transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In Reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE/RXFNE and PE bits set). This bitfield must be programmed only when the USART is disabled (UE=0). When the USART is enabled (UE=1), this bitfield may only be written to 0x0, in order to stop retransmission. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Wake-up from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (wake-up from low-power mode flag). This bitfield can only be written when the USART is disabled (UE=0). Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 22: Wake-up from low-power mode interrupt enable This bit is set and cleared by software. Note: WUFIE must be set before entering in low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO threshold interrupt enable This bit is set and cleared by software..
Bit 24: Transmission Complete before guard time, interrupt enable This bit is set and cleared by software. Note: If the USART does not support the Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bits 25-27: Receive FIFO threshold configuration Remaining combinations: Reserved.
Bit 28: RXFIFO threshold interrupt enable This bit is set and cleared by software..
Bits 29-31: TXFIFO threshold configuration Remaining combinations: Reserved.
USART baud rate register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRR
rw |
USART guard time and prescaler register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-7: Prescaler value PSC[7:0] = IrDA Normal and Low-power baud rate This bitfield is used for programming the prescaler for dividing the USART source clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): ... PSC[4:0]: Prescaler value This bitfield is used for programming the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: ... This bitfield can only be written when the USART is disabled (UE=0). Note: Bits [7:5] must be kept cleared if Smartcard mode is used. Note: This bitfield is reserved and forced by hardware to 0 when the Smartcard and IrDA modes are not supported. Refer to Section131.4: USART implementation on page1826..
Bits 8-15: Guard time value This bitfield is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bitfield can only be written when the USART is disabled (UE=0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receiver timeout register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLEN
rw |
RTO
rw |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RTO
rw |
Bits 0-23: Receiver timeout value This bitfield gives the Receiver timeout value in terms of number of bit duration. In Standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard chapter for more details. In the standard, the CWT/BWT measurement is done starting from the start bit of the last received character. Note: This value must only be programmed once per received character..
Bits 24-31: Block Length This bitfield gives the Block length in Smartcard T=1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0 -> 0 information characters + LEC BLEN = 1 -> 0 information characters + CRC BLEN = 255 -> 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE=0 (TXFE = 0 in case FIFO mode is enabled). This bitfield can be used also in other modes. In this case, the Block length counter is reset when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block..
USART request register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
0/5 fields covered.
Bit 0: Auto baud rate request Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and requests an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 1: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: When the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software must wait for the TXE flag assertion before setting the SBKRQ bit..
Bit 2: Mute mode request Writing 1 to this bit puts the USART in Mute mode and resets the RWU flag..
Bit 3: Receive data flush request Writing 1 to this bit empties the entire receive FIFO i.e. clears the bit RXFNE. This enables to discard the received data without reading them, and avoid an overrun condition..
Bit 4: Transmit data flush request When FIFO mode is disabled, writing 1 to this bit sets the TXE flag. This enables to discard the transmit data. This bit must be used only in Smartcard mode, when data have not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. When FIFO is enabled, TXFRQ bit is set to flush the whole FIFO. This sets the TXFE flag (Transmit FIFO empty, bit 23 in the USART_ISR register). Flushing the Transmit FIFO is supported in both UART and Smartcard modes. Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
28/28 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TXFT
r |
RXFT
r |
TCBGT
r |
RXFF
r |
TXFE
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXFNF
r |
TC
r |
RXFNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, meaning that data can be read from the USART_RDR register. Every read operation from the USART_RDR frees a location in the RXFIFO. RXFNE is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXFNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag behaves as follows: When TDN = 0, the TC flag is set when the transmission of a frame containing data is complete and when TXE/TXFE is set. When TDN is equal to the number of data in the TXFIFO, the TC flag is set when TXFIFO is empty and TDN is reached. When TDN is greater than the number of data in the TXFIFO, TC remains cleared until the TXFIFO is filled again to reach the programmed number of data to be transferred. When TDN is less than the number of data in the TXFIFO, TC is set when TDN is reached even if the TXFIFO is not empty. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full meaning that data can be written in the USART_TDR. Every write operation to the USART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the USART_TDR. An interrupt is generated if the TXFNFIE bit =1 in the USART_CR1 register. Note: The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF must be checked prior to writing in TXFIFO (TXFNF and TXFE is set at the same time). Note: This bit is used during single buffer transmission..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXFNE is also set, generating an interrupt if RXFNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXFNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 23: TXFIFO Empty This bit is set by hardware when TXFIFO is Empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the USART_RQR register. An interrupt is generated if the TXFEIE bit =1 (bit 30) in the USART_CR1 register..
Bit 24: RXFIFO Full This bit is set by hardware when the number of received data corresponds to RXFIFO1size1+11 (RXFIFO full + 1 data in the USART_RDR register. An interrupt is generated if the RXFFIE bit =1 in the USART_CR1 register..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
Bit 26: RXFIFO threshold flag This bit is set by hardware when the threshold programmed in RXFTCFG in USART_CR3 register is reached. This means that there are (RXFTCFG - 1) data in the Receive FIFO and one data in the USART_RDR register. An interrupt is generated if the RXFTIE bit =1 (bit 27) in the USART_CR3 register. Note: When the RXFTCFG threshold is configured to 101, RXFT flag is set if 16 data are available i.e. 15 data in the RXFIFO and 1 data in the USART_RDR. Consequently, the 17th received data does not cause an overrun error. The overrun error occurs after receiving the 18th data..
Bit 27: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG of USART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit =1 (bit 31) in the USART_CR3 register..
USART interrupt and status register
Offset: 0x1c, size: 32, reset: 0x000000C0, access: Unspecified
24/24 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCBGT
r |
REACK
r |
TEACK
r |
WUF
r |
RWU
r |
SBKF
r |
CMF
r |
BUSY
r |
||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
ABRF
r |
ABRE
r |
UDR
r |
EOBF
r |
RTOF
r |
CTS
r |
CTSIF
r |
LBDF
r |
TXE
r |
TC
r |
RXNE
r |
IDLE
r |
ORE
r |
NE
r |
FE
r |
PE
r |
Bit 0: Parity error This bit is set by hardware when a parity error occurs in Reception mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. Note: This error is associated with the character in the USART_RDR..
Bit 1: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE1=11 in the USART_CR3 register. Note: This error is associated with the character in the USART_RDR..
Bit 2: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. Note: When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section131.5.9: Tolerance of the USART receiver to clock deviation on page1845). Note: This error is associated with the character in the USART_RDR..
Bit 3: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXNE=1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register, or EIE = 1 in the USART_CR3 register. Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. Note: This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register..
Bit 4: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). Note: If Mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the Mute mode selected by the WAKE bit. If RWU=1, IDLE is not set..
Bit 5: Read data register not empty RXNE bit is set by hardware when the content of the USART_RDR shift register has been transferred to the USART_RDR register. It is cleared by reading from the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register..
Bit 6: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. The TC flag is set when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. TC bit is cleared by software by writing 1 to the TCCF in the USART_ICR register or by writing to the USART_TDR register..
Bit 7: Transmit data register empty TXE is set by hardware when the content of the USART_TDR register has been transferred into the shift register. It is cleared by writing to the USART_TDR register. The TXE flag can also be set by writing 1 to the TXFRQ in the USART_RQR register, in order to discard the data (only in Smartcard T=0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register..
Bit 8: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 10: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value..
Bit 11: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. Note: The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value..
Bit 12: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if EOBIE1=11 in the USART_CR1 register. It is cleared by software, writing 1 to EOBCF in the USART_ICR register. Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun error flag In Slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 14: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 15: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE is also set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value..
Bit 16: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not)..
Bit 17: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register..
Bit 18: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission..
Bit 19: Receiver wake-up from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wake-up/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wake-up on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 20: Wake-up from low-power mode flag This bit is set by hardware, when a wake-up event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE=1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 21: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period..
Bit 22: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 25: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE=1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is 1. Refer to Section131.4: USART implementation on page1826..
USART interrupt flag clear register
Offset: 0x20, size: 32, reset: 0x00000000, access: Unspecified
0/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUCF
w |
CMCF
w |
||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
UDRCF
w |
EOBCF
w |
RTOCF
w |
CTSCF
w |
LBDCF
w |
TCBGTCF
w |
TCCF
w |
TXFECF
w |
IDLECF
w |
ORECF
w |
NECF
w |
FECF
w |
PECF
w |
Bit 0: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register..
Bit 1: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART_ISR register..
Bit 2: Noise detected clear flag Writing 1 to this bit clears the NE flag in the USART_ISR register..
Bit 3: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register..
Bit 4: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register..
Bit 5: TXFIFO empty clear flag Writing 1 to this bit clears the TXFE flag in the USART_ISR register..
Bit 6: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART_ISR register..
Bit 7: Transmission complete before Guard time clear flag Writing 1 to this bit clears the TCBGT flag in the USART_ISR register..
Bit 8: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 9: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 11: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 12: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
Bit 13: SPI slave underrun clear flag Writing 1 to this bit clears the UDRF flag in the USART_ISR register. Note: If the USART does not support SPI slave mode, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826.
Bit 17: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART_ISR register..
Bit 20: Wake-up from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART_ISR register. Note: If the USART does not support the wake-up from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section131.4: USART implementation on page1826..
USART receive data register
Offset: 0x24, size: 32, reset: 0x00000000, access: Unspecified
1/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDR
r |
Bits 0-8: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure1227). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit..
USART transmit data register
Offset: 0x28, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDR
rw |
Bits 0-8: Transmit data value Contains the data character to be transmitted. The USART_TDR register provides the parallel interface between the internal bus and the output shift register (see Figure1227). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF=1..
USART prescaler register
Offset: 0x2c, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRESCALER
rw |
0x40005c00: USB address block description
25/189 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | USB_CHEP0R | ||||||||||||||||||||||||||||||||
0x4 | USB_CHEP1R | ||||||||||||||||||||||||||||||||
0x8 | USB_CHEP2R | ||||||||||||||||||||||||||||||||
0xc | USB_CHEP3R | ||||||||||||||||||||||||||||||||
0x10 | USB_CHEP4R | ||||||||||||||||||||||||||||||||
0x14 | USB_CHEP5R | ||||||||||||||||||||||||||||||||
0x18 | USB_CHEP6R | ||||||||||||||||||||||||||||||||
0x1c | USB_CHEP7R | ||||||||||||||||||||||||||||||||
0x40 | USB_CNTR | ||||||||||||||||||||||||||||||||
0x44 | USB_ISTR | ||||||||||||||||||||||||||||||||
0x48 | USB_FNR | ||||||||||||||||||||||||||||||||
0x4c | USB_DADDR | ||||||||||||||||||||||||||||||||
0x54 | USB_LPMCSR | ||||||||||||||||||||||||||||||||
0x58 | USB_BCDR |
USB endpoint/channel 0 register
Offset: 0x0, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 1 register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 2 register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 3 register
Offset: 0xc, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 4 register
Offset: 0x10, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 5 register
Offset: 0x14, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 6 register
Offset: 0x18, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB endpoint/channel 7 register
Offset: 0x1c, size: 32, reset: 0x00000000, access: Unspecified
1/17 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
THREE_ERR_RX
rw |
THREE_ERR_TX
rw |
ERR_RX
rw |
ERR_TX
rw |
LS_EP
rw |
NAK
rw |
DEVADDR
rw |
|||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
VTRX
rw |
DTOGRX
w |
STATRX
w |
SETUP
r |
UTYPE
rw |
EPKIND
rw |
VTTX
rw |
DTOGTX
w |
STATTX
w |
EA
rw |
Bits 0-3: endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction..
Bits 4-5: Status bits, for transmission transfers.
Bit 6: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint (in device mode) or when a SETUP transaction is acknowledged by the device (in host mode). If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1..
Bit 7: Valid USB transaction transmitted Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. Host mode Same as VTRX behavior but for USB OUT and SETUP transactions..
Bit 8: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. Table1217 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section134.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered STALL instead of ACK. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required..
Bits 9-10: USB type of transaction These bits configure the behavior of this endpoint/channel as described in Table1216: Endpoint/channel type encoding. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in Section134.5.5: Isochronous transfers in Device mode.
Bit 11: Setup transaction completed Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated..
Bits 12-13: Status bits, for reception transfers Device mode These bits contain information about the endpoint status, which are listed in Table1215: Reception status encoding on page11025. These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX1=11) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only VALID or DISABLED, so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to STALL or NAK for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application must not retry transmission but reset the USB and re-enumerate..
Bit 14: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (01=1DATA0, 11=1DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device mode), while it sets this bit to 1 when SETUP transaction is acknowledged by device (in host mode). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section134.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section134.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1..
Bit 15: USB valid transaction received Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application must consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application must read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application must read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit. Errors can be seen via the bits ERR_RX (host mode only). This bit is read/write but only 0 can be written, writing 1 has no effect..
Bits 16-22: Host mode Device address assigned to the endpoint during the enumeration process..
Bit 23: Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device..
Bit 24: Low speed endpoint.
Bit 25: Received error for an OUT/SETUP transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bit 26: Received error for an IN transaction Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated..
Bits 27-28: Three errors for an OUT or SETUP transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an OUT transaction. THREE_ERR_TX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
Bits 29-30: Three errors for an IN transaction Host mode This bit is set by the hardware when 3 consecutive transaction errors occurred on the USB bus for an IN transaction. THREE_ERR_RX is not generated for isochronous transactions. The software can only clear this bit. Coding of the received error:.
USB control register
Offset: 0x40, size: 32, reset: 0x00000003, access: Unspecified
1/18 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOST
rw |
DDISCM
rw |
THR512M
rw |
|||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTRM
rw |
PMAOVRM
rw |
ERRM
rw |
WKUPM
rw |
SUSPM
rw |
RST_DCONM
rw |
SOFM
rw |
ESOFM
rw |
L1REQM
rw |
L1RES
rw |
L2RES
rw |
SUSPEN
rw |
SUSPRDY
r |
PDWN
rw |
USBRST
rw |
Bit 0: USB Reset Software can set this bit to reset the USB core, exactly as it happens when receiving a RESET signaling on the USB.The USB peripheral, in response to a RESET, resets its internal protocol state machine. Reception and transmission are disabled until the RST_DCON bit is cleared. All configuration registers do not reset: the microcontroller must explicitly clear these registers (this is to ensure that the RST_DCON interrupt can be safely delivered, and any transaction immediately followed by a RESET can be completed). The function address and endpoint registers are reset by an USB reset event. Software sets this bit to drive USB reset state on the bus and initialize the device. USB reset terminates as soon as this bit is cleared by software..
Bit 1: Power down This bit is used to completely switch off all USB-related analog parts if it is required to completely disable the USB peripheral for any reason. When this bit is set, the USB peripheral is disconnected from the transceivers and it cannot be used..
Bit 2: Suspend state effective This bit is set by hardware as soon as the suspend state entered through the SUSPEN control gets internally effective. In this state USB activity is suspended, USB clock is gated, transceiver is set in low power mode by disabling the differential receiver. Only asynchronous wake-up logic and single ended receiver is kept alive to detect remote wake-up or resume events. Software must poll this bit to confirm it to be set before any STOP mode entry. This bit is cleared by hardware simultaneously to the WAKEUP flag being set..
Bit 3: Suspend state enable Software can set this bit when the SUSP interrupt is received, which is issued when no traffic is received by the USB peripheral for 31ms. Software can also set this bit when the L1REQ interrupt is received with positive acknowledge sent. As soon as the suspend state is propagated internally all device activity is stopped, USB clock is gated, USB transceiver is set into low power mode and the SUSPRDY bit is set by hardware. In the case that device application wants to pursue more aggressive power saving by stopping the USB clock source and by moving the microcontroller to stop mode, as in the case of bus powered device application, it must first wait few cycles to see the SUSPRDY1=11 acknowledge the suspend request. This bit is cleared by hardware simultaneous with the WAKEUP flag set. Software can set this bit when host application has nothing scheduled for the next frames and wants to enter long term power saving. When set, it stops immediately SOF generation and any other host activity, gates the USB clock and sets the transceiver in low power mode. If any USB transaction is on-going at the time SUSPEN is set, suspend is entered at the end of the current transaction. As soon as suspend state is propagated internally and gets effective the SUSPRDY bit is set. In the case that host application wants to pursue more aggressive power saving by stopping the USB clock source and by moving the micro-controller to STOP mode, it must first wait few cycles to see SUSPRDY=1 acknowledge to the suspend request. This bit is cleared by hardware simultaneous with the WAKEUP flag set..
Bit 4: L2 remote wake-up / resume driver Device mode The microcontroller can set this bit to send remote wake-up signaling to the host. It must be activated, according to USB specifications, for no less than 11ms and no more than 151ms after which the host PC is ready to drive the resume sequence up to its end. Host mode Software sets this bit to send resume signaling to the device. Software clears this bit to send end of resume to device and restart SOF generation. In the context of remote wake up, this bit is to be set following the WAKEUP interrupt..
Bit 5: L1 remote wake-up / resume driver.
Bit 7: LPM L1 state request interrupt mask.
Bit 8: Expected start of frame interrupt mask.
Bit 9: Start of frame interrupt mask.
Bit 10: USB reset request (Device mode) or device connect/disconnect (Host mode) interrupt mask.
Bit 11: Suspend mode interrupt mask.
Bit 12: Wake-up interrupt mask.
Bit 13: Error interrupt mask.
Bit 14: Packet memory area over / underrun interrupt mask.
Bit 15: Correct transfer interrupt mask.
Bit 16: 512 byte threshold interrupt mask.
Bit 17: Device disconnection mask Host mode.
Bit 31: HOST mode HOST bit selects betweens host or device USB mode of operation. It must be set before enabling the USB peripheral by the function enable bit..
USB interrupt status register
Offset: 0x44, size: 32, reset: 0x00000000, access: Unspecified
5/15 fields covered.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LS_DCON
r |
DCON_STAT
r |
DDISC
rw |
THR512
rw |
||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CTR
r |
PMAOVR
rw |
ERR
rw |
WKUP
rw |
SUSP
rw |
RST_DCON
rw |
SOF
rw |
ESOF
rw |
L1REQ
rw |
DIR
r |
IDN
r |
Bits 0-3: Device Endpoint / host channel identification number These bits are written by the hardware according to the host channel or device endpoint number, which generated the interrupt request. If several endpoint/channel transactions are pending, the hardware writes the identification number related to the endpoint/channel having the highest priority defined in the following way: two levels are defined, in order of priority: isochronous and double-buffered bulk channels/endpoints are considered first and then the others are examined. If more than one endpoint/channel from the same set is requesting an interrupt, the IDN bits in USB_ISTR register are assigned according to the lowest requesting register, CHEP0R having the highest priority followed by CHEP1R and so on. The application software can assign a register to each endpoint/channel according to this priority scheme, so as to order the concurring endpoint/channel requests in a suitable way. These bits are read only..
Bit 4: Direction of transaction This bit is written by the hardware according to the direction of the successful transaction, which generated the interrupt request. If DIR bit1=10, VTTX bit is set in the USB_CHEPnR register related to the interrupting endpoint. The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host PC). If DIR bit1=11, VTRX bit or both VTTX/VTRX are set in the USB_CHEPnR register related to the interrupting endpoint. The interrupting transaction is of OUT type (data received by the USB peripheral from the host PC) or two pending transactions are waiting to be processed. This information can be used by the application software to access the USB_CHEPnR bits related to the triggering transaction since it represents the direction having the interrupt pending. This bit is read-only..
Bit 7: LPM L1 state request Device mode This bit is set by the hardware when LPM command to enter the L1 state is successfully received and acknowledged. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 8: Expected start of frame Device mode This bit is set by the hardware when an SOF packet is expected but not received. The host sends an SOF packet each 11ms, but if the device does not receive it properly, the suspend timer issues this interrupt. If three consecutive ESOF interrupts are generated (for example three SOF packets are lost) without any traffic occurring in between, a SUSP interrupt is generated. This bit is set even when the missing SOF packets occur while the suspend timer is not yet locked. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 9: Start of frame This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives through the USB bus. The interrupt service routine may monitor the SOF events to have a 11ms synchronization event to the USB host and to safely read the USB_FNR register which is updated at the SOF packet reception (this can be useful for isochronous applications). This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 10: USB reset request (Device mode) or device connect/disconnect (Host mode) Device mode This bit is set by hardware when an USB reset is released by the host and the bus returns to idle. USB reset state is internally detected after the sampling of 60 consecutive SE0 cycles. Host mode This bit is set by hardware when device connection or device disconnection is detected. Device connection is signaled after J state is sampled for 22 cycles consecutively from unconnected state. Device disconnection is signaled after SE0 state is seen for 22 bit times consecutively from connected state..
Bit 11: Suspend mode request Device mode This bit is set by the hardware when no traffic has been received for 31ms, indicating a suspend mode request from the USB bus. The suspend condition check is enabled immediately after any USB reset and it is disabled by the hardware when the suspend mode is active (SUSPEN=1) until the end of resume sequence. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 12: Wake-up This bit is set to 1 by the hardware when, during suspend mode, activity is detected that wakes up the USB peripheral. This event asynchronously clears the SUSPRDY bit in the CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of the device (for example wake-up unit) about the start of the resume process. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 13: Error This flag is set whenever one of the errors listed below has occurred: NANS: No ANSwer. The timeout for a host response has expired. CRC: Cyclic redundancy check error. One of the received CRCs, either in the token or in the data, was wrong. BST: Bit stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or CRC. FVIO: Framing format violation. A non-standard frame was received (EOP not in the right place, wrong token sequence, etc.). The USB software can usually ignore errors, since the USB peripheral and the PC host manage retransmission in case of errors in a fully transparent way. This interrupt can be useful during the software development phase, or to monitor the quality of transmission over the USB bus, to flag possible problems to the user (for example loose connector, too noisy environment, broken conductor in the USB cable and so on). This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 14: Packet memory area over / underrun This bit is set if the microcontroller has not been able to respond in time to an USB memory request. The USB peripheral handles this event in the following way: During reception an ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the transmitted stream; in both cases the host retries the transaction. The PMAOVR interrupt must never occur during normal operations. Since the failed transaction is retried by the host, the application software has the chance to speed-up device operations during this interrupt handling, to be ready for the next transaction retry; however this does not happen during isochronous transfers (no isochronous transaction is anyway retried) leading to a loss of data in this case. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 15: Completed transfer in host mode This bit is set by the hardware to indicate that an endpoint/channel has successfully completed a transaction; using DIR and IDN bits software can determine which endpoint/channel requested the interrupt. This bit is read-only..
Bit 16: 512 byte threshold interrupt This bit is set to 1 by the hardware when 512 bytes have been transmitted or received during isochronous transfers. This bit is read/write but only 0 can be written and writing 1 has no effect. Note that no information is available to indicate the associated channel/endpoint, however in practice only one ISO endpoint/channel with such large packets can be supported, so that channel..
Bit 17: Device connection Host mode This bit is set when a device connection is detected. This bit is read/write but only 0 can be written and writing 1 has no effect..
Bit 29: Device connection status Host mode: This bit contains information about device connection status. It is set by hardware when a LS/FS device is attached to the host while it is reset when the device is disconnected..
Bit 30: Low speed device connected Host mode: This bit is set by hardware when an LS device connection is detected. Device connection is signaled after LS J-state is sampled for 22 consecutive cycles of the USB clock (481MHz) from the unconnected state..
USB frame number register
Offset: 0x48, size: 32, reset: 0x00000000, access: Unspecified
5/5 fields covered.
Bits 0-10: Frame number This bit field contains the 11-bits frame number contained in the last received SOF packet. The frame number is incremented for every frame sent by the host and it is useful for isochronous transfers. This bit field is updated on the generation of an SOF interrupt..
Bits 11-12: Lost SOF Device mode These bits are written by the hardware when an ESOF interrupt is generated, counting the number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are cleared..
Bit 13: Locked Device mode This bit is set by the hardware when at least two consecutive SOF packets have been received after the end of an USB reset condition or after the end of an USB resume sequence. Once locked, the frame timer remains in this state until an USB reset or USB suspend event occurs..
Bit 14: Receive data - line status This bit can be used to observe the status of received data minus upstream port data line. It can be used during end-of-suspend routines to help determining the wake-up event..
Bit 15: Receive data + line status This bit can be used to observe the status of received data plus upstream port data line. It can be used during end-of-suspend routines to help determining the wake-up event..
USB Device address
Offset: 0x4c, size: 32, reset: 0x00000000, access: Unspecified
0/2 fields covered.
Bits 0-6: Device address Device mode These bits contain the USB function address assigned by the host PC during the enumeration process. Both this field and the endpoint/channel address (EA) field in the associated USB_CHEPnR register must match with the information contained in a USB token in order to handle a transaction to the required endpoint. Host mode These bits contain the address transmitted with the LPM transaction.
Bit 7: Enable function This bit is set by the software to enable the USB Device. The address of this device is contained in the following ADD[6:0] bits. If this bit is at 0 no transactions are handled, irrespective of the settings of USB_CHEPnR registers..
LPM control and status register
Offset: 0x54, size: 32, reset: 0x00000000, access: Unspecified
2/4 fields covered.
Bit 0: LPM support enable Device mode This bit is set by the software to enable the LPM support within the USB Device. If this bit is at 0 no LPM transactions are handled..
Bit 1: LPM token acknowledge enable Device mode: The NYET/ACK is returned only on a successful LPM transaction: No errors in both the EXT token and the LPM token (else ERROR) A valid bLinkState = 0001B (L1) is received (else STALL).
Bit 3: bRemoteWake value Device mode This bit contains the bRemoteWake value received with last ACKed LPM Token.
Bits 4-7: BESL value Device mode These bits contain the BESL value received with last ACKed LPM Token.
Battery charging detector
Offset: 0x58, size: 32, reset: 0x00000000, access: Unspecified
4/9 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DPPU_DPD
rw |
PS2DET
r |
SDET
r |
PDET
r |
DCDET
r |
SDEN
rw |
PDEN
rw |
DCDEN
rw |
BCDEN
rw |
Bit 0: Battery charging detector (BCD) enable Device mode This bit is set by the software to enable the BCD support within the USB Device. When enabled, the USB PHY is fully controlled by BCD and cannot be used for normal communication. Once the BCD discovery is finished, the BCD must be placed in OFF mode by clearing this bit to 0 in order to allow the normal USB operation..
Bit 1: Data contact detection (DCD) mode enable Device mode This bit is set by the software to put the BCD into DCD mode. Only one detection mode (DCD, PD, SD or OFF) must be selected to work correctly..
Bit 2: Primary detection (PD) mode enable Device mode This bit is set by the software to put the BCD into PD mode. Only one detection mode (DCD, PD, SD or OFF) must be selected to work correctly..
Bit 3: Secondary detection (SD) mode enable Device mode This bit is set by the software to put the BCD into SD mode. Only one detection mode (DCD, PD, SD or OFF) must be selected to work correctly..
Bit 4: Data contact detection (DCD) status Device mode This bit gives the result of DCD..
Bit 5: Primary detection (PD) status Device mode This bit gives the result of PD..
Bit 6: Secondary detection (SD) status Device mode This bit gives the result of SD..
Bit 7: DM pull-up detection status Device mode This bit is active only during PD and gives the result of comparison between DM voltage level and V<sub>LGC</sub> threshold. In normal situation, the DM level must be below this threshold. If it is above, it means that the DM is externally pulled high. This can be caused by connection to a PS2 port (which pulls-up both DP and DM lines) or to some proprietary charger not following the BCD specification..
Bit 15: DP pull-up / DPDM pull-down Device mode This bit is set by software to enable the embedded pull-up on DP line. Clearing it to 0 can be used to signal disconnect to the host when needed by the user software. Host mode This bit is set by software to enable the embedded pull-down on DP and DM lines..
0x40010030: VREFBUF address block description
1/5 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | VREFBUF_CSR | ||||||||||||||||||||||||||||||||
0x4 | VREFBUF_CCR |
VREFBUF control and status register
Offset: 0x0, size: 32, reset: 0x00000002, access: Unspecified
1/4 fields covered.
Bit 0: Voltage reference buffer mode enable This bit is used to enable the voltage reference buffer mode..
Bit 1: High impedance mode This bit controls the analog switch to connect or not the V<sub>REF+</sub> pin. Refer to Table172: VREF buffer modes for the mode descriptions depending on ENVR bit configuration..
Bit 2: Voltage reference scale This bit selects the value generated by the voltage reference buffer..
Bit 3: Voltage reference buffer ready.
VREFBUF calibration control register
Offset: 0x4, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIM
rw |
0x40002c00: WWDG address block description
0/6 fields covered.
Offset | Name | 31 |
30 |
29 |
28 |
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0x0 | WWDG_CR | ||||||||||||||||||||||||||||||||
0x4 | WWDG_CFR | ||||||||||||||||||||||||||||||||
0x8 | WWDG_SR |
WWDG control register
Offset: 0x0, size: 32, reset: 0x0000007F, access: Unspecified
0/2 fields covered.
Bits 0-6: 7-bit counter (MSB to LSB) These bits contain the value of the watchdog counter, decremented every (4096 x 2<sup>WDGTB[2:0]</sup>) PCLK cycles. A reset is produced when it is decremented from 0x40 to 0x3F (T6 becomes cleared)..
Bit 7: Activation bit This bit is set by software and only cleared by hardware after a reset. When WDGA=1, the watchdog can generate a reset..
WWDG configuration register
Offset: 0x4, size: 32, reset: 0x0000007F, access: Unspecified
0/3 fields covered.
Bits 0-6: 7-bit window value These bits contain the window value to be compared with the down-counter..
Bit 9: Early wake-up interrupt enable Set by software and cleared by hardware after a reset. When set, an interrupt occurs whenever the counter reaches the value 0x40..
Bits 11-13: Timer base The timebase of the prescaler can be modified as follows:.
WWDG status register
Offset: 0x8, size: 32, reset: 0x00000000, access: Unspecified
0/1 fields covered.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EWIF
rw |