1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
//! Analog to digital converter
//!
//! Quickstart:
//!
//! * [`Adc::pin`] Sample an analog pin
//! * [`Adc::temperature`] Sample the junction temperature
//! * [`Adc::vbat`] Sample the battery voltage
#![cfg_attr(feature = "stm32wl5x_cm0p", allow(rustdoc::broken_intra_doc_links))]
#![cfg_attr(feature = "stm32wl5x_cm0p", allow(dead_code))]
#![cfg_attr(feature = "stm32wl5x_cm0p", allow(unused_imports))]

#[cfg(not(feature = "stm32wl5x_cm0p"))]
pub use pac::adc::cfgr2::{OVSR_A as OversampleRatio, OVSS_A as OversampleShift};

use crate::gpio;
use crate::Ratio;

use super::pac;
use core::{ptr::read_volatile, time::Duration};

use embedded_hal::blocking::delay::DelayUs;

// DS13293 rev 1 table 12
// TS ADC raw data acquired at 30 °C (± 5 °C),
// VDDA = VREF+ = 3.3 V (± 10 mV)
fn ts_cal1() -> u16 {
    unsafe { read_volatile(0x1FFF_75A8 as *const u16) }
}

// DS13293 rev 1 table 12
// TS ADC raw data acquired at 130 °C (± 5 °C),
// VDDA = VREF+ = 3.3 V (± 10 mV)
fn ts_cal2() -> u16 {
    unsafe { read_volatile(0x1FFF_75C8 as *const u16) }
}

fn ts_cal() -> (u16, u16) {
    (ts_cal1(), ts_cal2())
}

const TS_CAL1_TEMP: i16 = 30;
const TS_CAL2_TEMP: i16 = 130;
const TS_CAL_TEMP_DELTA: i16 = TS_CAL2_TEMP - TS_CAL1_TEMP;

/// t<sub>S_temp</sub> temperature sensor minimum sampling time
///
/// Value from DS13293 Rev 1 page 121 table 83 "TS characteristics"
pub const TS_MIN_SAMPLE: Duration = Duration::from_micros(5);
/// t<sub>START</sub> temperature sensor typical startup time when entering
/// continuous mode
///
/// Value from DS13293 Rev 1 page 121 table 83 "TS characteristics"
pub const TS_START_TYP: Duration = Duration::from_micros(70);
/// t<sub>START</sub> temperature sensor maximum startup time when entering
/// continuous mode
///
/// Value from DS13293 Rev 1 page 121 table 83 "TS characteristics"
pub const TS_START_MAX: Duration = Duration::from_micros(120);

/// t<sub>ADCVREG_SETUP</sub> ADC voltage regulator maximum startup time
///
/// Value from DS13293 Rev 1 page 117 table 80 "ADC characteristics"
pub const T_ADCVREG_SETUP: Duration = Duration::from_micros(20);

/// [`T_ADCVREG_SETUP`] expressed in microseconds
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::adc::{T_ADCVREG_SETUP, T_ADCVREG_SETUP_MICROS};
///
/// assert_eq!(
///     u128::from(T_ADCVREG_SETUP_MICROS),
///     T_ADCVREG_SETUP.as_micros()
/// );
/// ```
pub const T_ADCVREG_SETUP_MICROS: u8 = T_ADCVREG_SETUP.as_micros() as u8;

/// Mask of all valid channels
///
/// Channels 0-17, but without 15 and 16 because they are reserved.
const CH_MASK: u32 = 0x27FFF;

/// Interrupt masks
///
/// Used for [`Adc::set_isr`] and [`Adc::set_ier`].
pub mod irq {
    /// Channel configuration ready
    pub const CCRDY: u32 = 1 << 13;
    /// End of calibration
    pub const EOCAL: u32 = 1 << 11;
    /// Analog watchdog 3
    pub const AWD3: u32 = 1 << 9;
    /// Analog watchdog 2
    pub const AWD2: u32 = 1 << 8;
    /// Analog watchdog 1
    pub const AWD1: u32 = 1 << 7;
    /// Overrun
    pub const OVR: u32 = 1 << 4;
    /// End of conversion sequence
    pub const EOS: u32 = 1 << 3;
    /// End of conversion
    pub const EOC: u32 = 1 << 2;
    /// End of sampling
    pub const EOSMP: u32 = 1 << 1;
    /// ADC ready
    pub const ADRDY: u32 = 1;

    /// All IRQs
    pub const ALL: u32 = CCRDY | EOCAL | AWD3 | AWD2 | AWD1 | OVR | EOS | EOC | EOSMP | ADRDY;
}

/// Internal voltage reference ADC calibration
///
/// This is raw ADC data acquired at 30 °C (± 5 °C).
///
/// V<sub>DDA</sub> = V<sub>REF+</sub> = 3.3 V (± 10mV)
pub fn vref_cal() -> u16 {
    // DS13293 rev 1 table 13
    unsafe { read_volatile(0x1FFF_75AA as *const u16) }
}

/// ADC clock mode
///
/// In all synchronous clock modes, there is no jitter in the delay from a
/// timer trigger to the start of a conversion.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Clk {
    /// Asynchronous clock mode HSI16
    RccHsi,
    /// Asynchronous clock mode PLLP
    RccPllP,
    /// Asynchronous clock mode SYSCLK
    RccSysClk,
    /// Synchronous clock mode, pclk/2
    PClkDiv2,
    /// Synchronous clock mode, pclk/4
    PClkDiv4,
    /// Synchronous clock mode, pclk
    ///
    /// This configuration must be enabled only if PCLK has a 50% duty clock
    /// cycle (APB prescaler configured inside the RCC must be bypassed and
    /// the system clock must by 50% duty cycle)
    PClk,
}

#[cfg(not(feature = "stm32wl5x_cm0p"))]
impl Clk {
    const fn ckmode(&self) -> pac::adc::cfgr2::CKMODE_A {
        match self {
            Clk::RccHsi | Clk::RccPllP | Clk::RccSysClk => pac::adc::cfgr2::CKMODE_A::Adclk,
            Clk::PClkDiv2 => pac::adc::cfgr2::CKMODE_A::PclkDiv2,
            Clk::PClkDiv4 => pac::adc::cfgr2::CKMODE_A::PclkDiv4,
            Clk::PClk => pac::adc::cfgr2::CKMODE_A::Pclk,
        }
    }

    const fn adcsel(&self) -> pac::rcc::ccipr::ADCSEL_A {
        match self {
            Clk::RccHsi => pac::rcc::ccipr::ADCSEL_A::Hsi16,
            Clk::RccPllP => pac::rcc::ccipr::ADCSEL_A::Pllp,
            Clk::RccSysClk => pac::rcc::ccipr::ADCSEL_A::Sysclk,
            _ => pac::rcc::ccipr::ADCSEL_A::NoClock,
        }
    }
}

/// ADC sample times
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
pub enum Ts {
    /// 1.5 ADC clock cycles
    Cyc1 = 0,
    /// 3.5 ADC clock cycles
    Cyc3 = 1,
    /// 7.5 ADC clock cycles
    Cyc7 = 2,
    /// 12.5 ADC clock cycles
    Cyc12 = 3,
    /// 19.5 ADC clock cycles
    Cyc19 = 4,
    /// 39.5 ADC clock cycles
    Cyc39 = 5,
    /// 79.5 ADC clock cycles
    Cyc79 = 6,
    /// 160.5 ADC clock cycles
    Cyc160 = 7,
}

impl Default for Ts {
    /// Reset value of the sample time.
    fn default() -> Self {
        Ts::Cyc1
    }
}

impl Ts {
    /// Maximum sample time, 160.5 ADC clock cycles.
    ///
    /// # Example
    ///
    /// ```
    /// use stm32wlxx_hal::adc::Ts;
    ///
    /// assert_eq!(Ts::MAX, Ts::Cyc160);
    /// ```
    pub const MAX: Self = Self::Cyc160;

    /// Minimum sample time, 1.5 ADC clock cycles.
    ///
    /// # Example
    ///
    /// ```
    /// use stm32wlxx_hal::adc::Ts;
    ///
    /// assert_eq!(Ts::MIN, Ts::Cyc1);
    /// ```
    pub const MIN: Self = Self::Cyc1;

    /// Number of cycles.
    ///
    /// # Example
    ///
    /// ```
    /// use stm32wlxx_hal::adc::Ts;
    ///
    /// assert!(f32::from(Ts::Cyc1.cycles()) - 1.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc3.cycles()) - 3.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc7.cycles()) - 7.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc12.cycles()) - 12.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc19.cycles()) - 19.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc39.cycles()) - 39.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc79.cycles()) - 79.5 < 0.001);
    /// assert!(f32::from(Ts::Cyc160.cycles()) - 160.5 < 0.001);
    /// ```
    pub const fn cycles(&self) -> Ratio<u16> {
        match self {
            Ts::Cyc1 => Ratio::new_raw(3, 2),
            Ts::Cyc3 => Ratio::new_raw(7, 2),
            Ts::Cyc7 => Ratio::new_raw(15, 2),
            Ts::Cyc12 => Ratio::new_raw(25, 2),
            Ts::Cyc19 => Ratio::new_raw(39, 2),
            Ts::Cyc39 => Ratio::new_raw(79, 2),
            Ts::Cyc79 => Ratio::new_raw(159, 2),
            Ts::Cyc160 => Ratio::new_raw(321, 2),
        }
    }

    /// Get the cycles as a duration.
    ///
    /// Fractional nano-seconds are rounded towards zero.
    ///
    /// You can get the ADC frequency with [`Adc::clock_hz`].
    ///
    /// # Example
    ///
    /// Assuming the ADC clock frequency is 16 MHz.
    ///
    /// ```
    /// use core::time::Duration;
    /// use stm32wlxx_hal::adc::Ts;
    ///
    /// const FREQ: u32 = 16_000_000;
    ///
    /// assert_eq!(Ts::Cyc1.as_duration(FREQ), Duration::from_nanos(93));
    /// assert_eq!(Ts::Cyc3.as_duration(FREQ), Duration::from_nanos(218));
    /// assert_eq!(Ts::Cyc7.as_duration(FREQ), Duration::from_nanos(468));
    /// assert_eq!(Ts::Cyc12.as_duration(FREQ), Duration::from_nanos(781));
    /// assert_eq!(Ts::Cyc19.as_duration(FREQ), Duration::from_nanos(1_218));
    /// assert_eq!(Ts::Cyc39.as_duration(FREQ), Duration::from_nanos(2_468));
    /// assert_eq!(Ts::Cyc79.as_duration(FREQ), Duration::from_nanos(4_968));
    /// assert_eq!(Ts::Cyc160.as_duration(FREQ), Duration::from_nanos(10_031));
    /// ```
    ///
    /// [`Adc::clock_hz`]: crate::adc::Adc::clock_hz
    pub const fn as_duration(&self, hz: u32) -> Duration {
        let numer: u64 = (*self.cycles().numer() as u64).saturating_mul(1_000_000_000);
        let denom: u64 = (*self.cycles().denom() as u64).saturating_mul(hz as u64);
        Duration::from_nanos(numer / denom)
    }
}

impl From<Ts> for u8 {
    fn from(ts: Ts) -> Self {
        ts as u8
    }
}

impl From<Ts> for u32 {
    fn from(ts: Ts) -> Self {
        ts as u32
    }
}

/// ADC channels
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[repr(u8)]
pub enum Ch {
    /// ADC input 0.
    ///
    /// Connected to [`B13`](crate::gpio::pins::B13).
    In0 = 0,
    /// ADC input 1.
    ///
    /// Connected to [`B14`](crate::gpio::pins::B14).
    In1 = 1,
    /// ADC input 2.
    ///
    /// Connected to [`B3`](crate::gpio::pins::B3).
    In2 = 2,
    /// ADC input 3.
    ///
    /// Connected to [`B4`](crate::gpio::pins::B4).
    In3 = 3,
    /// ADC input 4.
    ///
    /// Connected to [`B2`](crate::gpio::pins::B2).
    In4 = 4,
    /// ADC input 5.
    ///
    /// Connected to [`B1`](crate::gpio::pins::B1).
    In5 = 5,
    /// ADC input 6.
    ///
    /// Connected to [`A10`](crate::gpio::pins::A10).
    In6 = 6,
    /// ADC input 7.
    ///
    /// Connected to [`A11`](crate::gpio::pins::A11).
    In7 = 7,
    /// ADC input 8.
    ///
    /// Connected to [`A12`](crate::gpio::pins::A12).
    In8 = 8,
    /// ADC input 9.
    ///
    /// Connected to [`A13`](crate::gpio::pins::A13).
    In9 = 9,
    /// ADC input 10.
    ///
    /// Connected to [`A14`](crate::gpio::pins::A14).
    In10 = 10,
    /// ADC input 11.
    ///
    /// Connected to [`A15`](crate::gpio::pins::A15).
    In11 = 11,
    /// Junction temperature sensor.
    Vts = 12,
    /// Internal voltage reference.
    Vref = 13,
    /// Battery voltage divided by 3.
    Vbat = 14,
    // 15, 16 are reserved
    /// Digital to analog converter output.
    ///
    /// The DAC outputs to this internal pin only when configured to output to
    /// chip peripherals.
    Dac = 17,
}

impl Ch {
    /// Bitmask of the channel.
    ///
    /// # Example
    ///
    /// ```
    /// use stm32wlxx_hal::adc::Ch;
    ///
    /// assert_eq!(Ch::In0.mask(), 0x001);
    /// assert_eq!(Ch::In8.mask(), 0x100);
    /// ```
    pub const fn mask(self) -> u32 {
        1 << (self as u8)
    }
}

/// Analog to digital converter driver.
#[derive(Debug)]
#[cfg(not(feature = "stm32wl5x_cm0p"))]
pub struct Adc {
    adc: pac::ADC,
}

#[cfg(not(feature = "stm32wl5x_cm0p"))]
impl Adc {
    /// Create a new ADC driver from a ADC peripheral.
    ///
    /// This will enable the ADC clock and reset the ADC peripheral.
    ///
    /// **Note:** This will select the clock source, but you are responsible
    /// for enabling that clock source.
    ///
    /// # Example
    ///
    /// Initialize the ADC with HSI16.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// ```
    ///
    /// Initialize the ADC with PCLK/4.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// ```
    #[inline]
    pub fn new(adc: pac::ADC, clk: Clk, rcc: &mut pac::RCC) -> Self {
        unsafe { Self::pulse_reset(rcc) };
        Self::enable_clock(rcc);
        let mut adc: Self = Self { adc };
        adc.set_clock_source(clk, rcc);
        adc
    }

    /// Create a new ADC driver from an ADC peripheral without initialization.
    ///
    /// This is a slightly safer version of [`steal`](Self::steal).
    ///
    /// # Safety
    ///
    /// 1. Reset the ADC peripheral if determinism is required.
    /// 2. Enable the ADC peripheral clock before using the ADC.
    /// 3. Select the clock source if a non-default clock is required.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// // safety: nothing is using the peripheral
    /// unsafe { Adc::pulse_reset(&mut dp.RCC) };
    ///
    /// Adc::enable_clock(&mut dp.RCC);
    ///
    /// // safety: ADC peripheral has been reset and clocks are enabled
    /// let mut adc: Adc = unsafe { Adc::new_no_init(dp.ADC) };
    ///
    /// // select the ADC clock, optional
    /// adc.set_clock_source(adc::Clk::PClkDiv4, &mut dp.RCC);
    /// ```
    #[inline]
    pub const unsafe fn new_no_init(adc: pac::ADC) -> Self {
        Self { adc }
    }

    /// Free the ADC peripheral from the driver.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// // ... use ADC
    /// let adc: pac::ADC = adc.free();
    /// ```
    #[inline]
    pub fn free(self) -> pac::ADC {
        self.adc
    }

    /// Steal the ADC peripheral from whatever is currently using it.
    ///
    /// This will **not** initialize the ADC (unlike [`new`]).
    ///
    /// # Safety
    ///
    /// 1. Ensure that the code stealing the ADC has exclusive access to the
    ///    peripheral. Singleton checks are bypassed with this method.
    /// 2. Reset the ADC peripheral if determinism is required.
    /// 3. Enable the ADC peripheral clock before using the ADC.
    /// 4. Select the clock source if a non-default clock is required.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let _: pac::ADC = dp.ADC;
    ///
    /// unsafe { Adc::pulse_reset(&mut dp.RCC) };
    ///
    /// Adc::enable_clock(&mut dp.RCC);
    ///
    /// let mut adc: Adc = unsafe { Adc::steal() };
    ///
    /// // select the ADC clock, optional
    /// adc.set_clock_source(adc::Clk::PClkDiv4, &mut dp.RCC);
    /// ```
    ///
    /// [`new`]: Adc::new
    #[inline]
    pub unsafe fn steal() -> Adc {
        Adc {
            adc: pac::Peripherals::steal().ADC,
        }
    }

    /// Set the ADC clock source.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is enabled
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc: Adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    ///
    /// // change the clock source
    /// adc.disable();
    /// adc.set_clock_source(adc::Clk::PClkDiv4, &mut dp.RCC);
    /// ```
    #[inline]
    pub fn set_clock_source(&mut self, clk: Clk, rcc: &mut pac::RCC) {
        debug_assert!(!self.is_enabled());
        self.adc
            .cfgr2
            .modify(|_, w| w.ckmode().variant(clk.ckmode()));
        rcc.ccipr.modify(|_, w| w.adcsel().variant(clk.adcsel()));
    }

    /// Get the ADC clock source.
    ///
    /// Returns `None` if the ADC is configured for an asynchronous clock,
    /// but no asynchronous clock is selected.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc: Adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    ///
    /// assert_eq!(adc.clock_source(&dp.RCC), Some(adc::Clk::PClkDiv4));
    /// ```
    pub fn clock_source(&self, rcc: &pac::RCC) -> Option<Clk> {
        use pac::{adc::cfgr2::CKMODE_A, rcc::ccipr::ADCSEL_A};

        match self.adc.cfgr2.read().ckmode().variant() {
            CKMODE_A::Adclk => match rcc.ccipr.read().adcsel().variant() {
                ADCSEL_A::NoClock => None,
                ADCSEL_A::Hsi16 => Some(Clk::RccHsi),
                ADCSEL_A::Pllp => Some(Clk::RccPllP),
                ADCSEL_A::Sysclk => Some(Clk::RccSysClk),
            },
            CKMODE_A::PclkDiv2 => Some(Clk::PClkDiv2),
            CKMODE_A::PclkDiv4 => Some(Clk::PClkDiv4),
            CKMODE_A::Pclk => Some(Clk::PClk),
        }
    }

    /// Disable the ADC clock.
    ///
    /// # Safety
    ///
    /// 1. Ensure nothing is using the ADC before disabling the clock.
    /// 2. You are responsible for re-enabling the clock before using the ADC.
    #[inline]
    pub unsafe fn disable_clock(rcc: &mut pac::RCC) {
        rcc.apb2enr.modify(|_, w| w.adcen().disabled());
    }

    /// Enable the ADC clock.
    ///
    /// [`new`](crate::adc::Adc::new) will enable clocks for you.
    #[inline]
    pub fn enable_clock(rcc: &mut pac::RCC) {
        rcc.apb2enr.modify(|_, w| w.adcen().enabled());
        rcc.apb2enr.read(); // delay after an RCC peripheral clock enabling
    }

    /// Pulse the ADC reset.
    ///
    /// [`new`](crate::adc::Adc::new) will pulse reset for you.
    ///
    /// # Safety
    ///
    /// 1. Ensure nothing is using the ADC before calling this function.
    /// 2. You are responsible for setting up the ADC after a reset.
    #[inline]
    pub unsafe fn pulse_reset(rcc: &mut pac::RCC) {
        rcc.apb2rstr.modify(|_, w| w.adcrst().set_bit());
        rcc.apb2rstr.modify(|_, w| w.adcrst().clear_bit());
    }

    /// Calculate the ADC clock frequency in hertz.
    ///
    /// **Note:** If the ADC prescaler register erroneously returns a reserved
    /// value the code will default to an ADC prescaler of 1.
    ///
    /// Fractional frequencies will be rounded towards zero.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let adc: Adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// assert_eq!(adc.clock_hz(&dp.RCC), 16_000_000);
    /// ```
    pub fn clock_hz(&self, rcc: &pac::RCC) -> u32 {
        use pac::{
            adc::{ccr::PRESC_A, cfgr2::CKMODE_A},
            rcc::ccipr::ADCSEL_A,
        };

        let source_freq: Ratio<u32> = match self.adc.cfgr2.read().ckmode().variant() {
            CKMODE_A::Adclk => {
                let src: Ratio<u32> = match rcc.ccipr.read().adcsel().variant() {
                    ADCSEL_A::NoClock => Ratio::new_raw(0, 1),
                    ADCSEL_A::Hsi16 => Ratio::new_raw(16_000_000, 1),
                    ADCSEL_A::Pllp => crate::rcc::pllpclk(rcc, &rcc.pllcfgr.read()),
                    ADCSEL_A::Sysclk => crate::rcc::sysclk(rcc, &rcc.cfgr.read()),
                };

                // only the asynchronous clocks have the prescaler applied
                let ccr = self.adc.ccr.read();
                let prescaler: u32 = match ccr.presc().variant() {
                    Some(p) => match p {
                        PRESC_A::Div1 => 1,
                        PRESC_A::Div2 => 2,
                        PRESC_A::Div4 => 4,
                        PRESC_A::Div6 => 6,
                        PRESC_A::Div8 => 8,
                        PRESC_A::Div10 => 10,
                        PRESC_A::Div12 => 12,
                        PRESC_A::Div16 => 16,
                        PRESC_A::Div32 => 32,
                        PRESC_A::Div64 => 64,
                        PRESC_A::Div128 => 128,
                        PRESC_A::Div256 => 256,
                    },
                    None => {
                        error!("Reserved ADC prescaler value {:#X}", ccr.presc().bits());
                        1
                    }
                };

                src / prescaler
            }
            CKMODE_A::PclkDiv2 => crate::rcc::pclk2(rcc, &rcc.cfgr.read()) / 2,
            CKMODE_A::PclkDiv4 => crate::rcc::pclk2(rcc, &rcc.cfgr.read()) / 4,
            CKMODE_A::Pclk => crate::rcc::pclk2(rcc, &rcc.cfgr.read()),
        };

        source_freq.to_integer()
    }

    /// Unmask the ADC IRQ in the NVIC.
    ///
    /// # Safety
    ///
    /// This can break mask-based critical sections.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # #[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
    /// unsafe { stm32wlxx_hal::adc::Adc::unmask_irq() };
    /// ```
    #[cfg(feature = "rt")]
    #[inline]
    pub unsafe fn unmask_irq() {
        pac::NVIC::unmask(pac::Interrupt::ADC)
    }

    /// Mask the ADC IRQ in the NVIC.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # #[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
    /// unsafe { stm32wlxx_hal::adc::Adc::mask_irq() }
    /// ```
    #[cfg(feature = "rt")]
    #[inline]
    pub fn mask_irq() {
        pac::NVIC::mask(pac::Interrupt::ADC)
    }

    /// Set sample times for **all** channels.
    ///
    /// For each bit in the mask:
    ///
    /// * `0`: Sample time is set by the `sel0` argument.
    /// * `1`: Sample time is set by the `sel1` argument.
    ///
    /// # Panics
    ///
    /// * (debug) An ADC conversion is in-progress
    ///
    /// # Example
    ///
    /// Set ADC channels [`In0`] and [`In1`] (pins [`B13`] and [`B14`]
    /// respectively) and the internal V<sub>BAT</sub> to a sample time of
    /// 39.5 ADC clock cycles, and set all other channels to a sample time of
    /// 160.5 clock cycles.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     self as hal,
    ///     adc::{self, Adc, Ts},
    ///     gpio::pins::{B13, B14},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.set_sample_times(
    ///     B14::ADC_CH.mask() | B13::ADC_CH.mask() | adc::Ch::Vbat.mask(),
    ///     Ts::Cyc160,
    ///     Ts::Cyc39,
    /// );
    /// ```
    ///
    /// [`In0`]: crate::adc::Ch::In0
    /// [`In1`]: crate::adc::Ch::In1
    /// [`B13`]: crate::gpio::pins::B13
    /// [`B14`]: crate::gpio::pins::B14
    #[inline]
    pub fn set_sample_times(&mut self, mask: u32, sel0: Ts, sel1: Ts) {
        debug_assert!(self.adc.cr.read().adstart().is_not_active());
        self.adc.smpr.write(|w| unsafe {
            w.bits((mask & CH_MASK) << 8 | u32::from(sel1) << 4 | u32::from(sel0))
        })
    }

    /// Sets all channels to the maximum sample time.
    ///
    /// This is a helper for testing and rapid prototyping purpose because
    /// [`set_sample_times`](Adc::set_sample_times) is verbose.
    ///
    /// This method is equivalent to this:
    ///
    /// ```no_run
    /// # let mut adc = unsafe { stm32wlxx_hal::adc::Adc::steal() };
    /// use stm32wlxx_hal::adc::Ts;
    ///
    /// adc.set_sample_times(0, Ts::Cyc160, Ts::Cyc160);
    /// ```
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.set_max_sample_time();
    /// ```
    #[inline]
    pub fn set_max_sample_time(&mut self) {
        self.set_sample_times(0, Ts::Cyc160, Ts::Cyc160);
    }

    /// Clear interrupts.
    ///
    /// # Example
    ///
    /// Clear all interrupts.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.set_isr(adc::irq::ALL);
    /// ```
    #[inline]
    pub fn set_isr(&mut self, isr: u32) {
        // safety: reserved bits are masked and will be held at reset value
        self.adc.isr.write(|w| unsafe { w.bits(isr & irq::ALL) })
    }

    /// Read the interrupt status.
    ///
    /// # Example
    ///
    /// Check if the ADC is ready.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// // this will be false because the ADC is not enabled
    /// let ready: bool = Adc::isr().adrdy().is_ready();
    /// ```
    #[inline]
    pub fn isr() -> pac::adc::isr::R {
        // safety: atomic read with no side-effects
        unsafe { (*pac::ADC::PTR).isr.read() }
    }

    /// Enable and disable interrupts.
    ///
    /// # Example
    ///
    /// Enable all IRQs
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.set_ier(adc::irq::ALL);
    /// ```
    #[inline]
    pub fn set_ier(&mut self, ier: u32) {
        // safety: reserved bits are masked and will be held at reset value
        self.adc.ier.write(|w| unsafe { w.bits(ier & irq::ALL) })
    }

    /// Configure the channel sequencer.
    ///
    /// This is advanced ADC usage, most of the time you will want to use a
    /// one of the available sample methods that will configure this.
    ///
    /// * [`pin`](Self::pin)
    /// * [`temperature`](Self::temperature)
    /// * [`vbat`](Self::vbat)
    ///
    /// This will not poll for completion, when this method returns the channel
    /// configuration may not be ready.
    ///
    /// # Panics
    ///
    /// * (debug) ADC conversion is in-progress.
    ///
    /// # Example
    ///
    /// Select the ADC V<sub>BAT</sub> channel.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.start_chsel(adc::Ch::Vbat.mask());
    /// while Adc::isr().ccrdy().is_not_complete() {}
    /// ```
    #[inline]
    pub fn start_chsel(&mut self, ch: u32) {
        debug_assert!(self.adc.cr.read().adstart().is_not_active());
        // See section 18.3.8 page 542 "Channel selection"
        // safety: reserved bits are masked and will be held at reset value
        self.adc
            .chselr0()
            .write(|w| unsafe { w.chsel().bits(ch & CH_MASK) });
    }

    #[inline]
    fn cfg_ch_seq(&mut self, ch: u32) {
        self.start_chsel(ch);
        while self.adc.isr.read().ccrdy().is_not_complete() {}
    }

    /// Start an ADC conversion.
    ///
    /// This is advanced ADC usage, most of the time you will want to use a
    /// one of the available sample methods that will configure this.
    ///
    /// * [`pin`](Self::pin)
    /// * [`temperature`](Self::temperature)
    /// * [`vbat`](Self::vbat)
    ///
    /// This will not poll for completion, when this method returns the AD
    /// conversion may not be complete.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    ///
    /// # Example
    ///
    /// See [`data`](Self::data).
    #[inline]
    pub fn start_conversion(&mut self) {
        debug_assert!(self.is_enabled());
        debug_assert!(self.adc.cr.read().addis().is_not_disabling());
        self.adc.cr.write(|w| w.adstart().start_conversion());
    }

    /// Stop an ADC conversion if there is one in-progress.
    pub fn stop_conversion(&mut self) {
        if self.adc.cr.read().adstart().is_active() {
            self.adc.cr.write(|w| w.adstp().stop_conversion());
            while self.adc.cr.read().adstp().bit_is_set() {}
        }
    }

    /// Read the ADC conversion data.
    ///
    /// This is advanced ADC usage, most of the time you will want to use a
    /// one of the available sample methods.
    ///
    /// * [`pin`](Self::pin)
    /// * [`temperature`](Self::temperature)
    /// * [`vbat`](Self::vbat)
    ///
    /// # Example
    ///
    /// Read the ADC V<sub>BAT</sub> channel.
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    ///
    /// // calibrate the ADC before it is enabled
    /// adc.calibrate(&mut delay);
    ///
    /// // enable the ADC
    /// adc.enable();
    ///
    /// // set the sample times to the maximum (160.5 ADC cycles)
    /// adc.set_max_sample_time();
    ///
    /// // select the Vbat channel and poll for completion
    /// adc.start_chsel(adc::Ch::Vbat.mask());
    /// while Adc::isr().ccrdy().is_not_complete() {}
    ///
    /// // start the conversion and poll for completion
    /// adc.start_conversion();
    /// while Adc::isr().eoc().is_not_complete() {}
    ///
    /// // read the ADC data
    /// let vbat: u16 = adc.data();
    /// ```
    #[inline]
    pub fn data(&self) -> u16 {
        self.adc.dr.read().data().bits()
    }

    fn poll_data(&self) -> u16 {
        while self.adc.isr.read().eoc().is_not_complete() {}
        let data: u16 = self.data();
        self.adc.isr.write(|w| w.eoc().set_bit());
        data
    }

    /// Enable the temperature sensor.
    ///
    /// You **MUST** wait for the temperature sensor to start up
    /// ([`TS_START_TYP`] or [`TS_START_MAX`])
    /// before the samples will be accurate.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.enable_tsen();
    /// // wait for the temperature sensor to startup
    /// delay.delay_us(adc::TS_START_MAX.as_micros() as u32);
    /// ```
    #[inline]
    pub fn enable_tsen(&mut self) {
        self.adc.ccr.modify(|_, w| w.tsen().enabled())
    }

    /// Disable the temperature sensor.
    #[inline]
    pub fn disable_tsen(&mut self) {
        self.adc.ccr.modify(|_, w| w.tsen().disabled())
    }

    /// Returns `true` if the temperature sensor is enabled.
    #[inline]
    #[must_use]
    pub fn is_tsen_enabled(&mut self) -> bool {
        self.adc.ccr.read().tsen().is_enabled()
    }

    /// Get the junction temperature.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    /// * (debug) Temperature sensor is not enabled
    ///
    /// # Sample Time
    ///
    /// You must set a sampling time with
    /// [`set_sample_times`](Adc::set_sample_times) greater than or equal to
    /// [`TS_MIN_SAMPLE`] before calling this method.
    /// When in doubt use the maximum sampling time, [`Ts::Cyc160`].
    ///
    /// # Calibration
    ///
    /// The temperature calibration provided on-chip appears to be for an
    /// uncalibrated ADC, though I can find no mention of this in the
    /// datasheet.
    ///
    /// If the ADC has been calibrated with [`calibrate`] the calibration offset
    /// will be removed from the sample.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.enable();
    /// adc.enable_tsen();
    /// delay.delay_us(adc::TS_START_MAX.as_micros() as u32);
    /// adc.set_max_sample_time();
    ///
    /// let tj: i16 = adc.temperature().to_integer();
    /// ```
    ///
    /// [`calibrate`]: crate::adc::Adc::calibrate
    pub fn temperature(&mut self) -> Ratio<i16> {
        debug_assert!(self.is_enabled());
        debug_assert!(self.is_tsen_enabled());

        self.cfg_ch_seq(Ch::Vts.mask());
        self.start_conversion();

        let (ts_cal1, ts_cal2): (u16, u16) = ts_cal();
        let ret: Ratio<i16> =
            Ratio::new_raw(TS_CAL_TEMP_DELTA, ts_cal2.wrapping_sub(ts_cal1) as i16);

        let calfact: u8 = self.adc.calfact.read().calfact().bits();
        let ts_data: u16 = self.poll_data().saturating_add(u16::from(calfact));

        ret * (ts_data.wrapping_sub(ts_cal1) as i16) + TS_CAL1_TEMP
    }

    /// Enable the internal voltage reference.
    #[inline]
    pub fn enable_vref(&mut self) {
        self.adc.ccr.modify(|_, w| w.vrefen().enabled())
    }

    /// Disable the internal voltage reference.
    #[inline]
    pub fn disable_vref(&mut self) {
        self.adc.ccr.modify(|_, w| w.vrefen().disabled())
    }

    /// Returns `true` if the internal voltage reference is enabled.
    #[inline]
    #[must_use]
    pub fn is_vref_enabled(&mut self) -> bool {
        self.adc.ccr.read().vrefen().is_enabled()
    }

    /// Enable oversampling.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is enabled
    #[inline]
    #[cfg(not(feature = "stm32wl5x_cm0p"))]
    pub fn enable_oversampling(&mut self, ratio: OversampleRatio, shift: OversampleShift) {
        debug_assert!(!self.is_enabled());
        self.adc.cfgr2.modify(|_, w| {
            w.ovse()
                .enabled()
                .ovsr()
                .variant(ratio)
                .ovss()
                .variant(shift)
        })
    }

    /// Disables oversampling.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is enabled
    #[inline]
    pub fn disable_oversampling(&mut self) {
        debug_assert!(!self.is_enabled());
        self.adc.cfgr2.modify(|_, w| w.ovse().disabled())
    }

    /// Returns `true` if oversampling is enabled.
    #[inline]
    #[must_use]
    pub fn is_oversampling_enabled(&mut self) -> bool {
        self.adc.cfgr2.read().ovse().is_enabled()
    }

    /// Read the internal voltage reference.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    /// * (debug) Voltage reference is not enabled
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    /// adc.set_max_sample_time();
    /// adc.enable();
    /// adc.enable_vref();
    ///
    /// let vref: u16 = adc.vref();
    /// let vref_cal: u16 = adc::vref_cal();
    /// let error: i16 = ((vref as i16) - (vref_cal as i16)).abs();
    /// assert!(error < 10);
    /// ```
    pub fn vref(&mut self) -> u16 {
        debug_assert!(self.is_enabled());
        debug_assert!(self.is_vref_enabled());
        self.cfg_ch_seq(Ch::Vref.mask());
        self.start_conversion();
        self.poll_data()
    }

    /// Sample the DAC output.
    ///
    /// The DAC must be configured to output to chip peripherals for this to
    /// work as expected.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     dac::{Dac, ModeChip},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    /// adc.set_max_sample_time();
    ///
    /// let mut dac: Dac = Dac::new(dp.DAC, &mut dp.RCC);
    /// dac.set_mode_chip(ModeChip::Norm);
    ///
    /// dac.setup_soft_trigger();
    /// dac.soft_trigger(1234);
    /// // should be in the same ballpark as the DAC output
    /// let sample: u16 = adc.dac();
    /// ```
    pub fn dac(&mut self) -> u16 {
        debug_assert!(self.is_enabled());
        self.cfg_ch_seq(Ch::Dac.mask());
        self.start_conversion();
        self.poll_data()
    }

    /// Sample a GPIO pin.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     gpio::{pins::B4, Analog, PortB},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    /// adc.set_max_sample_time();
    /// adc.enable();
    ///
    /// let gpiob: PortB = PortB::split(dp.GPIOB, &mut dp.RCC);
    /// let b4: Analog<B4> = cortex_m::interrupt::free(|cs| Analog::new(gpiob.b4, cs));
    ///
    /// let sample: u16 = adc.pin(&b4);
    /// ```
    #[allow(unused_variables)]
    pub fn pin<P: gpio::sealed::AdcCh>(&mut self, pin: &gpio::Analog<P>) -> u16 {
        debug_assert!(self.is_enabled());
        self.cfg_ch_seq(P::ADC_CH.mask());
        self.start_conversion();
        self.poll_data()
    }

    /// Enable V<sub>BAT</sub>.
    ///
    /// To prevent any unwanted consumption on the battery, it is recommended to
    /// enable the bridge divider only when needed for ADC conversion.
    #[inline]
    pub fn enable_vbat(&mut self) {
        self.adc.ccr.modify(|_, w| w.vbaten().enabled())
    }

    /// Disable V<sub>BAT</sub>.
    #[inline]
    pub fn disable_vbat(&mut self) {
        self.adc.ccr.modify(|_, w| w.vbaten().disabled());
    }

    /// Returns `true` if V<sub>BAT</sub> is enabled.
    #[inline]
    #[must_use]
    pub fn is_vbat_enabled(&self) -> bool {
        self.adc.ccr.read().vbaten().is_enabled()
    }

    /// Sample the V<sub>BAT</sub> pin.
    ///
    /// This is internally connected to a bridge divider, the converted digital
    /// value is a third the V<sub>BAT</sub> voltage.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC has a pending disable request
    /// * (debug) V<sub>BAT</sub> is not enabled
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     self as hal,
    ///     adc::{self, Adc},
    ///     dac::{Dac, ModeChip},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    ///
    /// adc.enable();
    /// adc.enable_vbat();
    /// adc.set_max_sample_time();
    /// let sample: u16 = adc.vbat();
    /// ```
    pub fn vbat(&mut self) -> u16 {
        debug_assert!(self.is_enabled());
        debug_assert!(self.is_vbat_enabled());
        self.cfg_ch_seq(Ch::Vbat.mask());
        self.start_conversion();
        self.poll_data()
    }
}

// on-off control
// see RM0453 rev 1 section 18.3.4 page 537
#[cfg(not(feature = "stm32wl5x_cm0p"))]
impl Adc {
    /// Returns `true` if the ADC is enabled.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// assert_eq!(adc.is_enabled(), false);
    /// ```
    #[inline]
    #[must_use]
    pub fn is_enabled(&self) -> bool {
        self.adc.cr.read().aden().bit_is_set()
    }

    /// Returns `true` if an ADC disable command is in-progress.
    #[inline]
    #[must_use]
    pub fn disable_in_progress(&self) -> bool {
        self.adc.cr.read().addis().bit_is_set()
    }

    /// Returns `true` if the ADC is disabled, and there is no disable command
    /// in-progress.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// assert_eq!(adc.is_disabled(), true);
    /// ```
    #[inline]
    #[must_use]
    pub fn is_disabled(&self) -> bool {
        let cr = self.adc.cr.read();
        cr.aden().bit_is_clear() && cr.addis().bit_is_clear()
    }

    /// Start the ADC enable procedure.
    ///
    /// This is advanced ADC usage, most of the time you will want to use
    /// [`enable`](Self::enable).
    ///
    /// This will not poll for completion, when this method returns the ADC
    /// may not be enabled.
    ///
    /// The method returns `true` if the caller function should poll for
    /// completion (the ADC was not already enabled),
    /// if the ADC was already enabled and the ADRDY interrupt was cleared then
    /// the ADRDY bit will **not** be set again after calling this method
    /// which can lead to polling loops that will never terminate.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// if adc.start_enable() {
    ///     while Adc::isr().adrdy().is_not_ready() {}
    /// }
    /// ```
    #[inline]
    #[must_use = "the return value indicates if you should wait for completion"]
    pub fn start_enable(&mut self) -> bool {
        if self.adc.cr.read().aden().is_disabled() {
            self.adc.isr.write(|w| w.adrdy().set_bit());
            self.adc.cr.write(|w| w.aden().set_bit());
            true
        } else {
            false
        }
    }

    /// Enable the ADC and poll for completion.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.enable();
    /// ```
    #[inline]
    pub fn enable(&mut self) {
        if self.start_enable() {
            while self.adc.isr.read().adrdy().is_not_ready() {}
        }
    }

    /// Start the ADC disable procedure.
    ///
    /// This is advanced ADC usage, most of the time you will want to use
    /// [`disable`](Self::disable).
    ///
    /// This will not poll for completion, when this function returns the ADC
    /// may not be disabled.
    ///
    /// This will stop any conversions in-progress.
    ///
    /// The ADC takes about 20 CPU cycles to disable with a 48MHz sysclk and
    /// the ADC on the 16MHz HSI clock.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.enable();
    /// // ... use ADC
    /// adc.start_disable();
    /// while !adc.is_disabled() {}
    /// ```
    pub fn start_disable(&mut self) {
        // RM0453 rev 1 section 18.3.4 page 537 ADC on-off control
        // 1. Check that ADSTART = 0 in the ADC_CR register to ensure that no
        //    conversion is ongoing.
        //    If required, stop any ongoing conversion by writing 1 to the
        //    ADSTP bit in the ADC_CR register and waiting until this bit is
        //    read at 0.
        // 2. Set ADDIS = 1 in the ADC_CR register.
        // 3. If required by the application, wait until ADEN = 0 in the ADC_CR
        //    register, indicating that the ADC is fully disabled
        //    (ADDIS is automatically reset once ADEN = 0).
        // 4. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1
        //    (optional).
        self.stop_conversion();
        // Setting ADDIS to `1` is only effective when ADEN = 1 and ADSTART = 0
        // (which ensures that no conversion is ongoing)
        if self.adc.cr.read().aden().bit_is_set() {
            self.adc.cr.write(|w| w.addis().set_bit());
        }
    }

    /// Disable the ADC and poll for completion.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::PClkDiv4, &mut dp.RCC);
    /// adc.enable();
    /// // ... use ADC
    /// adc.disable();
    /// ```
    pub fn disable(&mut self) {
        self.start_disable();
        while !self.is_disabled() {}
    }
}

// calibration related methods
// see RM0453 rev 1 section 18.3.3 page 536
#[cfg(not(feature = "stm32wl5x_cm0p"))]
impl Adc {
    /// Calibrate the ADC for additional accuracy.
    ///
    /// Calibration should be performed before starting A/D conversion.
    /// It removes the offset error which may vary from chip to chip due to
    /// process variation.
    ///
    /// The calibration factor is lost in the following cases:
    /// * The power supply is removed from the ADC
    ///   (for example when entering STANDBY or VBAT mode)
    /// * The ADC peripheral is reset.
    ///
    /// This will disable the ADC if it is not already disabled.
    ///
    /// This function is the simple way to calibrate the ADC, you can use
    /// these methods to achieve the same results if you desire finer controls:
    ///
    /// * [`enable_vreg`](Self::enable_vreg)
    /// * A delay function
    /// * [`start_calibrate`](Self::start_calibrate)
    /// * [`set_ier`](Self::set_ier) (optional)
    /// * [`Adc::isr`]
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    /// ```
    pub fn calibrate<D: DelayUs<u8>>(&mut self, delay: &mut D) {
        self.enable_vreg();

        // voltage regulator output is available after T_ADCVREG_SETUP
        delay.delay_us(T_ADCVREG_SETUP_MICROS);

        self.start_calibrate();

        // takes 401 cycles at 48MHz sysclk, ADC at 16MHz with HSI
        while self.adc.cr.read().adcal().is_calibrating() {}
        self.adc.isr.write(|w| w.eocal().set_bit());
    }

    /// Enable the ADC voltage regulator for calibration.
    ///
    /// This is advanced ADC usage, most of the time you will want to use
    /// [`calibrate`](Self::calibrate).
    ///
    /// This will disable the ADC and DMA request generation if not already
    /// disabled.
    ///
    /// You **MUST** wait [`T_ADCVREG_SETUP`] before the voltage regulator
    /// output is available.  This delay is not performed for you.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.enable_vreg();
    /// delay.delay_us(u32::from(adc::T_ADCVREG_SETUP_MICROS));
    /// ```
    pub fn enable_vreg(&mut self) {
        // RM0453 rev 1 section 18.3.3 page 536 Software calibration procedure
        // 1. Ensure that ADEN = 0, ADVREGEN = 1 and DMAEN = 0.
        // 2. Set ADCAL = 1.
        // 3. Wait until ADCAL = 0 (or until EOCAL = 1).
        //    This can be handled by interrupt if the interrupt is enabled by
        //    setting the EOCALIE bit in the ADC_IER register
        // 4. The calibration factor can be read from bits 6:0 of ADC_DR or
        //    ADC_CALFACT registers.

        // takes appx 55 cycles when already disabled
        self.disable();

        // enable the voltage regulator as soon as possible to start the
        // countdown on the regulator setup time
        // this is a write because all other fields must be zero
        self.adc.cr.write(|w| w.advregen().enabled());
        // disable DMA per the calibration procedure
        self.adc.cfgr1.modify(|_, w| w.dmaen().clear_bit());
    }

    /// Disable the ADC voltage regulator.
    ///
    /// # Panics
    ///
    /// * (debug) ADC is enabled
    #[inline]
    pub fn disable_vreg(&mut self) {
        debug_assert!(self.is_disabled());
        self.adc.cr.write(|w| w.advregen().disabled());
    }

    /// Start the ADC calibration.
    ///
    /// This is advanced ADC usage, most of the time you will want to use
    /// [`calibrate`](Self::calibrate).
    ///
    /// When this function returns the ADC calibration has started, but
    /// may not have finished.
    /// Check if the ADC calibration has finished with [`Adc::isr`].
    ///
    /// # Panics
    ///
    /// * (debug) ADC is enabled.
    /// * (debug) ADC voltage regulator is not enabled.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    ///
    /// adc.enable_vreg();
    /// delay.delay_us(u32::from(adc::T_ADCVREG_SETUP_MICROS));
    /// adc.start_calibrate();
    /// // datasheet says this takes 82 ADC clock cycles
    /// // my measurements are closer to 120 ADC clock cycles
    /// while Adc::isr().eocal().is_not_complete() {}
    /// ```
    #[inline]
    pub fn start_calibrate(&mut self) {
        debug_assert!(self.adc.cr.read().advregen().is_enabled());
        debug_assert!(self.is_disabled());
        self.adc
            .cr
            .write(|w| w.adcal().start_calibration().advregen().enabled());
    }

    /// Get the ADC calibration factor.
    ///
    /// # Example
    ///
    /// See [`force_cal`](Self::force_cal).
    #[inline]
    pub fn calfact(&self) -> u8 {
        self.adc.calfact.read().calfact().bits()
    }

    /// Force the ADC calibration.
    ///
    /// The calibration factor is lost each time power is removed from the ADC
    /// (for example when entering standby or V<sub>BAT</sub> mode)
    /// It is possible to save and restore the calibration factor with firmware
    /// to save time when re-starting the ADC (as long as temperature and
    /// voltage are stable during the ADC power-down).
    ///
    /// # Panics
    ///
    /// * (debug) ADC is not enabled
    /// * (debug) ADC conversion is in-progress
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     adc::{self, Adc},
    ///     pac, rcc,
    ///     util::new_delay,
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
    ///
    /// // enable the HSI16 source clock
    /// dp.RCC.cr.modify(|_, w| w.hsion().set_bit());
    /// while dp.RCC.cr.read().hsirdy().is_not_ready() {}
    ///
    /// let mut delay = new_delay(cp.SYST, &dp.RCC);
    /// let mut adc = Adc::new(dp.ADC, adc::Clk::RccHsi, &mut dp.RCC);
    /// adc.calibrate(&mut delay);
    ///
    /// // save the calibration factor
    /// let calfact: u8 = adc.calfact();
    ///
    /// // restore the calibration
    /// adc.enable(); // ADC must be enabled to restore the calibration
    /// adc.force_cal(calfact);
    /// ```
    #[inline]
    pub fn force_cal(&mut self, calfact: u8) {
        debug_assert!(self.is_enabled());
        debug_assert!(self.adc.cr.read().adstart().bit_is_clear());
        self.adc.calfact.write(|w| w.calfact().bits(calfact))
    }
}