1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
//! Advanced encryption standard
use crate::pac;
pub use pac::aes::cr::DATATYPE_A as SwapMode;
use pac::aes::cr::KEYSIZE_A as KeySize;
/// Algorithm modes.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[allow(dead_code)]
enum Algorithm {
/// Electronic codebook chaining algorithm
Ecb,
/// Cipher block chaining algorithm
Cbc,
/// Counter mode chaining algorithm
Ctr,
/// Galois counter mode - Galois message authentication code
Gcm,
/// Counter with Cipher Mode
Ccm,
}
impl Algorithm {
/// Bit 16
pub(crate) const fn chmod2(&self) -> bool {
matches!(self, Algorithm::Ccm)
}
/// Bits 6:5
pub(crate) const fn chmod10(&self) -> u8 {
match self {
Algorithm::Ecb => 0b00,
Algorithm::Cbc => 0b01,
Algorithm::Ctr => 0b10,
Algorithm::Gcm => 0b11,
Algorithm::Ccm => 0b00,
}
}
}
#[repr(u8)]
#[allow(dead_code)]
enum Mode {
Encryption = 0b00,
KeyDerivation = 0b01,
Decryption = 0b10,
/// ST does not document this!
/// ST uses this in their HAL implementation and it passes NIST tests...
KeyDerivationDecryption = 0b11,
}
impl Mode {
pub const fn bits(self) -> u8 {
self as u8
}
}
impl From<Mode> for u8 {
fn from(m: Mode) -> Self {
m as u8
}
}
/// Wrapper around [`Aes`] for safely disabling the peripheral clock.
#[derive(Debug)]
pub struct AesWrapClk {
aes: Aes,
}
impl AesWrapClk {
/// Run a function that accepts the AES driver as an argument,
/// enabling the peripheral clock with [`enable_clock`] before calling the
/// function, and disabling the peripheral clock with [`disable_clock`]
/// after calling the function.
///
/// This is useful for saving power in applications that need to access the
/// AES peripheral infrequently.
///
/// # Power Savings
///
/// From DS13105 Rev 9:
///
/// * Range 1: 2.50 μA/MHz
/// * Range 2: 2.13 μA/MHz
/// * LPRun and LPSleep: 1.80 μA/MHz
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// aes::{Aes, AesWrapClk},
/// pac,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // safety:
/// // * no need to reset because the AES memory-mapped IO has not been accessed since power-on
/// // * the wrapper will handle enabling clocks
/// let mut aeswrap: AesWrapClk = unsafe { Aes::new_no_init(dp.AES) }.into();
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let mut text: [u32; 4] = [0xf34481ec, 0x3cc627ba, 0xcd5dc3fb, 0x08f273e6];
/// aeswrap.with_clk(&mut dp.RCC, |aes| aes.encrypt_ecb_inplace(&KEY, &mut text))?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
///
/// [`enable_clock`]: Aes::enable_clock
/// [`disable_clock`]: Aes::disable_clock
#[inline]
pub fn with_clk<F>(&mut self, rcc: &mut pac::RCC, f: F) -> Result<(), Error>
where
F: FnOnce(&mut Aes) -> Result<(), Error>,
{
Aes::enable_clock(rcc);
let ret: Result<(), Error> = f(&mut self.aes);
unsafe { Aes::disable_clock(rcc) };
ret
}
}
impl From<Aes> for AesWrapClk {
#[inline]
fn from(aes: Aes) -> Self {
Self { aes }
}
}
/// AES errors.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Unexpected read operation from the `AES_DOUTR` register
/// during computation or data input phase.
Read,
/// Unexpected write operation to the `AES_DINR` register
/// during computation or data output phase.
Write,
}
/// AES driver.
#[derive(Debug)]
pub struct Aes {
aes: pac::AES,
swap_mode: SwapMode,
}
impl Aes {
/// Create a new AES driver from an AES peripheral.
///
/// This will enable clocks and reset the AES peripheral.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
/// ```
#[inline]
pub fn new(aes: pac::AES, rcc: &mut pac::RCC) -> Aes {
Self::enable_clock(rcc);
unsafe { Self::pulse_reset(rcc) };
Aes {
aes,
swap_mode: SwapMode::None,
}
}
/// Free the AES peripheral from the driver.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
/// // ... use AES
/// let aes: pac::AES = aes.free();
/// ```
#[inline]
pub fn free(self) -> pac::AES {
self.aes
}
/// Reset the AES peripheral.
///
/// [`new`](Self::new) will pulse reset for you.
///
/// # Safety
///
/// 1. Ensure nothing is using the AES peripheral before calling this function.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub unsafe fn pulse_reset(rcc: &mut pac::RCC) {
rcc.ahb3rstr.modify(|_, w| w.aesrst().set_bit());
rcc.ahb3rstr.modify(|_, w| w.aesrst().clear_bit());
}
/// Disable the AES peripheral clock.
///
/// # Safety
///
/// 1. Ensure nothing is using the AES peripheral before disabling the clock.
/// 2. You are responsible for re-enabling the clock before using the AES peripheral.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
/// // ... use AES
///
/// // safety: AES is not in use
/// unsafe { Aes::disable_clock(&mut dp.RCC) };
///
/// // have a low power nap or something
///
/// Aes::enable_clock(&mut dp.RCC);
/// // ... use AES
/// ```
#[inline]
pub unsafe fn disable_clock(rcc: &mut pac::RCC) {
rcc.ahb3enr.modify(|_, w| w.aesen().disabled());
}
/// Enable the AES peripheral clock.
///
/// [`new`](Self::new) will enable clocks for you.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub fn enable_clock(rcc: &mut pac::RCC) {
rcc.ahb3enr.modify(|_, w| w.aesen().enabled());
rcc.ahb3enr.read(); // delay after an RCC peripheral clock enabling
}
/// Create a new AES driver from an AES peripheral without initialization.
///
/// This is a slightly safer version of [`steal`](Self::steal).
///
/// # Safety
///
/// 1. You are responsible for resetting the AES peripheral and enabling
/// the AES peripheral clock before use.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // safety: nothing is using the peripheral
/// unsafe { Aes::pulse_reset(&mut dp.RCC) };
///
/// Aes::enable_clock(&mut dp.RCC);
///
/// // safety: AES peripheral has been reset and clocks are enabled
/// let aes: Aes = unsafe { Aes::new_no_init(dp.AES) };
/// ```
#[inline]
pub const unsafe fn new_no_init(aes: pac::AES) -> Aes {
Aes {
aes,
swap_mode: SwapMode::None,
}
}
/// Steal the AES peripheral from whatever is currently using it.
///
/// This will **not** initialize the AES peripheral (unlike [`new`]).
///
/// # Safety
///
/// 1. Ensure that the code stealing the AES peripheral has exclusive access.
/// Singleton checks are bypassed with this method.
/// 2. You are responsible for resetting the AES peripheral and enabling
/// the AES peripheral clock before use.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// // AES cannot be used via registers now
/// let _: pac::AES = dp.AES;
///
/// // safety: nothing is using the peripheral
/// unsafe { Aes::pulse_reset(&mut dp.RCC) };
///
/// Aes::enable_clock(&mut dp.RCC);
///
/// // safety
/// // 1. We have exclusive access
/// // 2. peripheral has been setup
/// let aes: Aes = unsafe { Aes::steal() };
/// ```
///
/// [`new`]: Aes::new
#[inline]
pub unsafe fn steal() -> Aes {
let dp: pac::Peripherals = pac::Peripherals::steal();
Aes {
aes: dp.AES,
swap_mode: SwapMode::None,
}
}
/// Unmask the AES IRQ in the NVIC.
///
/// # Safety
///
/// This can break mask-based critical sections.
///
/// # Example
///
/// ```no_run
/// # #[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
/// unsafe { stm32wlxx_hal::aes::Aes::unmask_irq() };
/// ```
#[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
#[inline]
pub unsafe fn unmask_irq() {
pac::NVIC::unmask(pac::Interrupt::AES)
}
fn set_key(&mut self, key: &[u32]) -> KeySize {
match key.len() {
4 => {
self.aes.cr.write(|w| w.en().disabled().keysize().bits128());
self.aes.keyr3.write(|w| w.key().bits(key[0]));
self.aes.keyr2.write(|w| w.key().bits(key[1]));
self.aes.keyr1.write(|w| w.key().bits(key[2]));
self.aes.keyr0.write(|w| w.key().bits(key[3]));
KeySize::Bits128
}
8 => {
self.aes.cr.write(|w| w.en().disabled().keysize().bits256());
self.aes.keyr7.write(|w| w.key().bits(key[0]));
self.aes.keyr6.write(|w| w.key().bits(key[1]));
self.aes.keyr5.write(|w| w.key().bits(key[2]));
self.aes.keyr4.write(|w| w.key().bits(key[3]));
self.aes.keyr3.write(|w| w.key().bits(key[4]));
self.aes.keyr2.write(|w| w.key().bits(key[5]));
self.aes.keyr1.write(|w| w.key().bits(key[6]));
self.aes.keyr0.write(|w| w.key().bits(key[7]));
KeySize::Bits256
}
_ => panic!("Key must be 128-bit or 256-bit not {}-bit", key.len() * 32),
}
}
fn poll_completion(&self) -> Result<(), Error> {
loop {
let sr = self.aes.sr.read();
if sr.wrerr().bit_is_set() {
return Err(Error::Write);
}
if sr.rderr().bit_is_set() {
return Err(Error::Read);
}
if sr.ccf().bit_is_set() {
return Ok(());
}
}
}
fn set_din(&mut self, din: &[u32; 4]) {
din.iter()
.for_each(|dw| self.aes.dinr.write(|w| w.din().bits(*dw)))
}
fn dout(&mut self, buf: &mut [u32; 4]) {
buf.iter_mut()
.for_each(|dw| *dw = self.aes.doutr.read().bits());
}
fn set_din_slice(&mut self, din: &[u32]) {
(0..4).for_each(|idx| {
self.aes
.dinr
.write(|w| w.din().bits(*din.get(idx).unwrap_or(&0)))
});
}
fn dout_slice(&mut self, buf: &mut [u32]) {
(0..4).for_each(|idx| {
let dout: u32 = self.aes.doutr.read().bits();
if let Some(dw) = buf.get_mut(idx) {
*dw = dout;
}
});
}
// expensive copy for the sake of allowing unaligned u8 data
#[allow(clippy::get_first)]
fn set_din_block(&mut self, block: &[u8]) {
for chunk in block.chunks(4) {
let din: u32 = (chunk.get(0).copied().unwrap_or(0) as u32) << 24
| (chunk.get(1).copied().unwrap_or(0) as u32) << 16
| (chunk.get(2).copied().unwrap_or(0) as u32) << 8
| (chunk.get(3).copied().unwrap_or(0) as u32);
self.aes.dinr.write(|w| w.din().bits(din));
}
let remain_dw: usize = 4 - ((block.len() + 3) / 4);
for _ in 0..remain_dw {
self.aes.dinr.write(|w| w.din().bits(0));
}
}
// expensive copy for the sake of allowing unaligned u8 data
fn dout_block(&mut self, block: &mut [u8]) {
for chunk in block.chunks_mut(4) {
let dout: u32 = self.aes.doutr.read().bits();
if let Some(byte) = chunk.get_mut(0) {
*byte = (dout >> 24) as u8
}
if let Some(byte) = chunk.get_mut(1) {
*byte = (dout >> 16) as u8
}
if let Some(byte) = chunk.get_mut(2) {
*byte = (dout >> 8) as u8
}
if let Some(byte) = chunk.get_mut(3) {
*byte = dout as u8
}
}
let remain_dw: usize = 4 - ((block.len() + 3) / 4);
for _ in 0..remain_dw {
let _: u32 = self.aes.doutr.read().bits();
}
}
fn gcm_init_phase<const MODE: u8>(
&mut self,
key: &[u32],
iv: &[u32; 3],
) -> Result<KeySize, Error> {
const ALGO: Algorithm = Algorithm::Gcm;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
let keysize: KeySize = self.set_key(key);
self.aes.ivr0.write(|w| w.ivi().bits(2));
self.aes.ivr1.write(|w| w.ivi().bits(iv[2]));
self.aes.ivr2.write(|w| w.ivi().bits(iv[1]));
self.aes.ivr3.write(|w| w.ivi().bits(iv[0]));
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().init();
w.keysize().variant(keysize);
w.npblb().bits(0)
});
self.poll_completion()?;
Ok(keysize)
}
fn gcm_final_phase<const MODE: u8>(
&mut self,
keysize: KeySize,
aad_len: usize,
buf_len: usize,
tag: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Gcm;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().final_();
w.keysize().variant(keysize);
w.npblb().bits(0)
});
// byte length to bit lengths
// impossible to overflow, not enough RAM for [u8; (u32::MAX >> 3) + 1]
let aad_len: u32 = (aad_len as u32) << 3;
let buf_len: u32 = (buf_len as u32) << 3;
self.aes.dinr.write(|w| w.din().bits(0));
self.aes.dinr.write(|w| w.din().bits(aad_len));
self.aes.dinr.write(|w| w.din().bits(0));
self.aes.dinr.write(|w| w.din().bits(buf_len));
self.poll_completion()?;
self.dout(tag);
Ok(())
}
fn gcm_inplace<const MODE: u8>(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u8],
buf: &mut [u8],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Gcm;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
// init phase
let keysize: KeySize = self.gcm_init_phase::<MODE>(key, iv)?;
// header phase
for block in aad.chunks(16) {
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().header();
w.keysize().variant(keysize);
w.npblb().bits(0) // not used in header phase
});
self.set_din_block(block);
self.poll_completion()?;
}
// payload phase
for block in buf.chunks_mut(16) {
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().payload();
w.keysize().variant(keysize);
w.npblb().bits(16 - (block.len() as u8))
});
self.set_din_block(block);
self.poll_completion()?;
self.dout_block(block);
}
self.gcm_final_phase::<MODE>(keysize, aad.len(), buf.len(), tag)
}
fn gcm_inplace_u32<const MODE: u8>(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u32],
buf: &mut [u32],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Gcm;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
// init phase
let keysize: KeySize = self.gcm_init_phase::<MODE>(key, iv)?;
// header phase
for block in aad.chunks(4) {
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().header();
w.keysize().variant(keysize);
w.npblb().bits(0) // not used in header phase
});
self.set_din_slice(block);
self.poll_completion()?;
}
// payload phase
for block in buf.chunks_mut(4) {
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().payload();
w.keysize().variant(keysize);
w.npblb().bits(16 - (core::mem::size_of_val(block) as u8))
});
self.set_din_slice(block);
self.poll_completion()?;
self.dout_slice(block);
}
// final phase
self.gcm_final_phase::<MODE>(
keysize,
core::mem::size_of_val(aad),
core::mem::size_of_val(buf),
tag,
)
}
/// Set the way data is read from input and output registers according to section
/// 23.4.13 (AES Data register and data swapping) of Reference Manual
pub fn set_dataswap(&mut self, mode: SwapMode) {
self.swap_mode = mode;
}
/// Encrypt using the electronic codebook chaining (ECB) algorithm.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let plaintext: [u32; 4] = [0xf34481ec, 0x3cc627ba, 0xcd5dc3fb, 0x08f273e6];
/// let mut ciphertext: [u32; 4] = [0; 4];
/// aes.encrypt_ecb(&KEY, &plaintext, &mut ciphertext)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn encrypt_ecb(
&mut self,
key: &[u32],
plaintext: &[u32; 4],
ciphertext: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Ecb;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
const MODE: u8 = Mode::Encryption.bits();
let keysize: KeySize = self.set_key(key);
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().bits(0); // do not care for ECB
w.keysize().variant(keysize);
w.npblb().bits(0) // no padding
});
self.set_din(plaintext);
self.poll_completion()?;
self.dout(ciphertext);
Ok(())
}
/// Encrypt using the electronic codebook chaining (ECB) algorithm in-place.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let mut text: [u32; 4] = [0xf34481ec, 0x3cc627ba, 0xcd5dc3fb, 0x08f273e6];
/// aes.encrypt_ecb_inplace(&KEY, &mut text)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn encrypt_ecb_inplace(
&mut self,
key: &[u32],
plaintext: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Ecb;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
const MODE: u8 = Mode::Encryption.bits();
let keysize: KeySize = self.set_key(key);
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().bits(0); // do not care for ECB
w.keysize().variant(keysize);
w.npblb().bits(0) // no padding
});
self.set_din(plaintext);
self.poll_completion()?;
self.dout(plaintext);
Ok(())
}
/// Encrypt using the Galois counter mode (GCM) algorithm in-place.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// aes::Aes,
/// pac,
/// rng::{self, Rng},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
/// let mut rng = Rng::new(dp.RNG, rng::Clk::Msi, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let mut iv: [u32; 3] = [0; 3];
/// rng.try_fill_u32(&mut iv)
/// .expect("failed to generate entropy");
///
/// let mut associated_data: [u8; 0] = [];
/// let mut plaintext: [u8; 13] = b"Hello, World!".clone();
/// let mut tag: [u32; 4] = [0; 4];
/// aes.encrypt_gcm_inplace(&KEY, &iv, &associated_data, &mut plaintext, &mut tag)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn encrypt_gcm_inplace(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u8],
plaintext: &mut [u8],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const MODE: u8 = Mode::Encryption.bits();
self.gcm_inplace::<MODE>(key, iv, aad, plaintext, tag)
}
/// Encrypt using the Galois counter mode (GCM) algorithm in-place.
///
/// `u32` is the native AES peripheral data size.
/// This method skips byte packing / unpacking that occurs in
/// [`encrypt_gcm_inplace`](Self::encrypt_gcm_inplace).
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// aes::Aes,
/// pac,
/// rng::{self, Rng},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
/// let mut rng = Rng::new(dp.RNG, rng::Clk::Msi, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let mut iv: [u32; 3] = [0; 3];
/// rng.try_fill_u32(&mut iv)
/// .expect("failed to generate entropy");
///
/// let mut associated_data: [u32; 0] = [];
/// let mut plaintext: [u32; 1] = [0x12345678];
/// let mut tag: [u32; 4] = [0; 4];
/// aes.encrypt_gcm_inplace_u32(&KEY, &iv, &associated_data, &mut plaintext, &mut tag)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn encrypt_gcm_inplace_u32(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u32],
plaintext: &mut [u32],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const MODE: u8 = Mode::Encryption.bits();
self.gcm_inplace_u32::<MODE>(key, iv, aad, plaintext, tag)
}
/// Decrypt using the electronic codebook chaining (ECB) algorithm.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let ciphertext: [u32; 4] = [0x0336763e, 0x966d9259, 0x5a567cc9, 0xce537f5e];
/// let mut plaintext: [u32; 4] = [0; 4];
/// aes.decrypt_ecb(&KEY, &ciphertext, &mut plaintext)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn decrypt_ecb(
&mut self,
key: &[u32],
ciphertext: &[u32; 4],
plaintext: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Ecb;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
const MODE: u8 = Mode::KeyDerivationDecryption.bits();
let keysize: KeySize = self.set_key(key);
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().bits(0); // do not care for ECB
w.keysize().variant(keysize);
w.npblb().bits(0) // no padding
});
self.set_din(ciphertext);
self.poll_completion()?;
self.dout(plaintext);
Ok(())
}
/// Decrypt using the electronic codebook chaining (ECB) algorithm in-place.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
///
/// let mut text: [u32; 4] = [0x0336763e, 0x966d9259, 0x5a567cc9, 0xce537f5e];
/// aes.decrypt_ecb_inplace(&KEY, &mut text)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn decrypt_ecb_inplace(
&mut self,
key: &[u32],
ciphertext: &mut [u32; 4],
) -> Result<(), Error> {
const ALGO: Algorithm = Algorithm::Ecb;
const CHMOD2: bool = ALGO.chmod2();
const CHMOD10: u8 = ALGO.chmod10();
const MODE: u8 = Mode::KeyDerivationDecryption.bits();
let keysize: KeySize = self.set_key(key);
self.aes.cr.write(|w| {
w.en().enabled();
w.datatype().variant(self.swap_mode);
w.mode().bits(MODE);
w.chmod2().bit(CHMOD2);
w.chmod().bits(CHMOD10);
w.ccfc().clear();
w.errc().clear();
w.ccfie().disabled();
w.errie().disabled();
w.dmainen().disabled();
w.dmaouten().disabled();
w.gcmph().bits(0); // do not care for ECB
w.keysize().variant(keysize);
w.npblb().bits(0) // no padding
});
self.set_din(ciphertext);
self.poll_completion()?;
self.dout(ciphertext);
Ok(())
}
/// Decrypt using the Galois counter mode (GCM) algorithm in-place.
///
/// The resulting tag should be compared to the tag sent from the peer
/// to verify the authenticity of the message.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
/// const IV: [u32; 3] = [0; 3];
///
/// let mut associated_data: [u8; 0] = [];
/// let mut ciphertext: [u8; 5] = [0xf3, 0x44, 0x81, 0xec, 0x3c];
/// let mut tag: [u32; 4] = [0; 4];
/// aes.decrypt_gcm_inplace(&KEY, &IV, &associated_data, &mut ciphertext, &mut tag)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn decrypt_gcm_inplace(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u8],
ciphertext: &mut [u8],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const MODE: u8 = Mode::Decryption.bits();
self.gcm_inplace::<MODE>(key, iv, aad, ciphertext, tag)
}
/// Decrypt using the Galois counter mode (GCM) algorithm in-place.
///
/// `u32` is the native AES peripheral data size.
/// This method skips byte packing / unpacking that occurs in
/// [`decrypt_gcm_inplace`](Self::decrypt_gcm_inplace).
///
/// The resulting tag should be compared to the tag sent from the peer
/// to verify the authenticity of the message.
///
/// # Panics
///
/// * Key is not 128-bits long `[u32; 4]` or 256-bits long `[u32; 8]`.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{aes::Aes, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut aes: Aes = Aes::new(dp.AES, &mut dp.RCC);
///
/// const KEY: [u32; 4] = [0; 4];
/// const IV: [u32; 3] = [0; 3];
///
/// let mut associated_data: [u32; 0] = [];
/// let mut ciphertext: [u32; 1] = [0xf34481ec];
/// let mut tag: [u32; 4] = [0; 4];
/// aes.decrypt_gcm_inplace_u32(&KEY, &IV, &associated_data, &mut ciphertext, &mut tag)?;
/// # Ok::<(), stm32wlxx_hal::aes::Error>(())
/// ```
pub fn decrypt_gcm_inplace_u32(
&mut self,
key: &[u32],
iv: &[u32; 3],
aad: &[u32],
ciphertext: &mut [u32],
tag: &mut [u32; 4],
) -> Result<(), Error> {
const MODE: u8 = Mode::Decryption.bits();
self.gcm_inplace_u32::<MODE>(key, iv, aad, ciphertext, tag)
}
}