1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
//! Direct memory access
// developers notes:
//
// This is the way it is (not using the PAC, unsafe code) for several reasons:
//
// * svd2rust is not monomorphic for multiple instantiations of the same
// peripheral
// * svd2rust does not have a way to index arrays of registers
// * even if svd2rust had the two above the DMAs and DMAMUX have links between
// them that the PAC cannot see
//
// This is the best solution I could come up with (at the time), feedback is
// very much welcome.
mod cr;
use core::ops::Mul;
use super::pac;
pub use cr::{Cr, Dir, Priority, Size};
/// IRQ flags.
pub mod flags {
/// Global interrupt, combination of all other interrupts.
pub const GLOBAL: u8 = 1 << 0;
/// Transfer complete.
pub const XFER_CPL: u8 = 1 << 1;
/// Transfer half complete.
pub const XFER_HLF: u8 = 1 << 2;
/// Transfer error.
pub const XFER_ERR: u8 = 1 << 3;
}
const DMA1_BASE: usize = 0x4002_0000;
const DMA2_BASE: usize = 0x4002_0400;
const MUX_BASE: usize = 0x4002_0800;
const MUX_CSR_ADDR: usize = MUX_BASE + 0x80;
const MUX_CCFR_ADDR: usize = MUX_BASE + 0x84;
// const MUX_RGSR_ADDR: usize = MUX_BASE + 0x140;
// const MUX_RGCFR_ADDR: usize = MUX_BASE + 0x144;
/// DMA errors.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Transfer error.
Xfer,
}
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct Dma<const BASE: usize, const CH: u8> {}
impl<const BASE: usize, const CH: u8> Dma<BASE, CH> {
pub const MUX_CH: u8 = match BASE {
DMA1_BASE => CH,
DMA2_BASE => CH + 7,
_ => core::panic!("DMA base address is invalid"),
};
const MUX_CR: *mut u32 = (MUX_BASE + 0x4 * (Self::MUX_CH as usize)) as *mut u32;
// const MUX_RGCR: *mut u32 = (MUX_BASE + 0x100 + 0x4 * (Self::MUX_CH as usize)) as *mut u32;
const ISR: *mut u32 = BASE as *mut u32;
const IFCR: *mut u32 = (BASE + 0x4) as *mut u32;
const CR: *mut u32 = (BASE + 0x08 + 0x14 * (CH as usize)) as *mut u32;
const NDT: *mut u32 = (BASE + 0x0C + 0x14 * (CH as usize)) as *mut u32;
const PA: *mut u32 = (BASE + 0x10 + 0x14 * (CH as usize)) as *mut u32;
const MA: *mut u32 = (BASE + 0x14 + 0x14 * (CH as usize)) as *mut u32;
#[inline]
pub const fn new() -> Dma<BASE, CH> {
Dma {}
}
#[inline]
pub fn flags(&self) -> u8 {
let raw: u32 = unsafe { Self::ISR.read_volatile() };
((raw >> CH.mul(4)) & 0xF) as u8
}
#[inline]
pub fn clear_flags(&mut self, flags: u8) {
let val: u32 = u32::from(flags & 0xF) << CH.mul(4);
unsafe { Self::IFCR.write_volatile(val) }
}
#[inline]
pub fn set_periph_addr(&mut self, pa: u32) {
unsafe { Self::PA.write_volatile(pa) }
}
#[inline]
pub fn set_mem_addr(&mut self, ma: u32) {
unsafe { Self::MA.write_volatile(ma) }
}
#[inline]
pub fn set_num_data_xfer(&mut self, ndt: u32) {
unsafe { Self::NDT.write_volatile(ndt) }
}
#[inline]
pub fn num_data_xfer(&self) -> u32 {
unsafe { Self::NDT.read_volatile() }
}
#[inline]
pub fn set_cr(&mut self, cr: Cr) {
unsafe { Self::CR.write_volatile(cr.raw()) }
}
#[inline]
pub fn cr(&self) -> Cr {
Cr::new(unsafe { Self::CR.read_volatile() })
}
#[inline]
pub fn set_mux_cr_reqid(&mut self, req_id: u8) {
unsafe { Self::MUX_CR.write_volatile(req_id as u32) }
}
/// Returns `true` if the DMA MUX synchronization overrun bit is set for
/// this channel.
#[inline]
pub fn sync_ovr(&self) -> bool {
let csr: u32 = unsafe { (MUX_CSR_ADDR as *const u32).read_volatile() };
csr >> Self::MUX_CH & 0b1 == 0b1
}
#[inline]
#[allow(dead_code)]
pub fn clr_sync_ovr(&mut self) {
unsafe { (MUX_CCFR_ADDR as *mut u32).write_volatile(1 << Self::MUX_CH) };
}
}
pub(crate) mod sealed {
use super::Cr;
pub trait DmaOps {
fn set_periph_addr(&mut self, pa: u32);
fn set_mem_addr(&mut self, ma: u32);
fn set_num_data_xfer(&mut self, ndt: u32);
fn num_data_xfer(&self) -> u32;
fn set_cr(&mut self, cr: Cr);
fn cr(&self) -> Cr;
fn set_mux_cr_reqid(&mut self, req_id: u8);
fn sync_ovr(&self) -> bool;
fn clr_sync_ovr(&mut self);
}
}
/// DMA channel trait.
pub trait DmaCh: sealed::DmaOps {
/// DMA IRQ number.
const IRQ: pac::Interrupt;
/// Get the interrupt flags for the DMA channel.
///
/// **Note:** The lower 4 bits of the return value are unused.
///
/// # Example
///
/// Check if the transfer is complete.
///
/// ```no_run
/// use stm32wlxx_hal::dma::{flags, DmaCh};
///
/// # let dma = unsafe { stm32wlxx_hal::dma::AllDma::steal().d1.c1 };
/// let xfer_cpl: bool = dma.flags() & flags::XFER_CPL != 0;
/// ```
fn flags(&self) -> u8;
/// Clear interrupt flags on the DMA channel.
///
/// **Note:** The lower 4 bits of the `flags` argument are used.
///
/// # Example
///
/// Check and clear all set flags.
///
/// ```no_run
/// use stm32wlxx_hal::dma::{flags, DmaCh};
///
/// # let mut dma = unsafe { stm32wlxx_hal::dma::AllDma::steal().d1.c1 };
/// let flags: u8 = dma.flags();
/// dma.clear_flags(flags);
/// ```
fn clear_flags(&mut self, flags: u8);
/// Clear all interrupt flags on the DMA channel.
#[inline]
fn clear_all_flags(&mut self) {
self.clear_flags(flags::GLOBAL | flags::XFER_CPL | flags::XFER_HLF | flags::XFER_ERR)
}
/// Unmask the DMA interrupt in the NVIC.
///
/// # Safety
///
/// This can break mask-based critical sections.
///
/// # Cortex-M0+
///
/// On the STM32WL5X Cortex-M0+ core the DMA interrupts are not independent
/// (one per channel), and enabling the interrupt for a DMA channel will
/// enable other IRQs in the same group:
///
/// * DMA1 channel 3:1 secure and non-secure interrupt (C2IMR2\[2:0\])
/// * DMA1 channel 7:4 secure and non-secure interrupt (C2IMR2\[6:3\])
/// * DMA2 channel 7:1 secure and non-secure interrupt (C2IMR2\[14:8\])
/// DMAMUX1 overrun interrupt (C2IMR2\[15\])
#[inline]
unsafe fn unmask_irq(&self) {
pac::NVIC::unmask(Self::IRQ)
}
/// Mask the DMA interrupt in the NVIC.
#[inline]
fn mask_irq(&self) {
pac::NVIC::mask(Self::IRQ)
}
}
macro_rules! dma_ch {
($ctrl:expr, $ch:expr, $irq:ident) => {
paste::paste! {
#[doc = "Controller " $ctrl " channel " $ch "."]
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct [<Dma $ctrl Ch $ch>] {
pub(crate) dma: Dma<[<DMA $ctrl _BASE>], { $ch - 1 }>,
}
impl [<Dma $ctrl Ch $ch>] {
const fn new() -> Self {
Self { dma: Dma::new() }
}
}
impl DmaCh for [<Dma $ctrl Ch $ch>] {
const IRQ: pac::Interrupt = irq_num::$irq;
#[inline]
fn flags(&self) -> u8 {
self.dma.flags()
}
#[inline]
fn clear_flags(&mut self, flags: u8) {
self.dma.clear_flags(flags)
}
}
impl sealed::DmaOps for [<Dma $ctrl Ch $ch>] {
#[inline]
fn set_periph_addr(&mut self, pa: u32) {
self.dma.set_periph_addr(pa)
}
#[inline]
fn set_mem_addr(&mut self, ma: u32) {
self.dma.set_mem_addr(ma)
}
#[inline]
fn set_num_data_xfer(&mut self, ndt: u32) {
self.dma.set_num_data_xfer(ndt)
}
#[inline]
fn num_data_xfer(&self) -> u32 {
self.dma.num_data_xfer()
}
#[inline]
fn set_cr(&mut self, cr: Cr) {
self.dma.set_cr(cr)
}
#[inline]
fn cr(&self) -> Cr {
self.dma.cr()
}
#[inline]
fn set_mux_cr_reqid(&mut self, req_id: u8) {
self.dma.set_mux_cr_reqid(req_id)
}
#[inline]
fn sync_ovr(&self) -> bool {
self.dma.sync_ovr()
}
#[inline]
fn clr_sync_ovr(&mut self) {
self.dma.clr_sync_ovr()
}
}
}
};
}
#[cfg(any(feature = "stm32wl5x_cm4", feature = "stm32wle5"))]
mod irq_num {
use crate::pac::Interrupt;
pub const DMA1_CH1: Interrupt = Interrupt::DMA1_CH1;
pub const DMA1_CH2: Interrupt = Interrupt::DMA1_CH2;
pub const DMA1_CH3: Interrupt = Interrupt::DMA1_CH3;
pub const DMA1_CH4: Interrupt = Interrupt::DMA1_CH4;
pub const DMA1_CH5: Interrupt = Interrupt::DMA1_CH5;
pub const DMA1_CH6: Interrupt = Interrupt::DMA1_CH6;
pub const DMA1_CH7: Interrupt = Interrupt::DMA1_CH7;
pub const DMA2_CH1: Interrupt = Interrupt::DMA2_CH1;
pub const DMA2_CH2: Interrupt = Interrupt::DMA2_CH2;
pub const DMA2_CH3: Interrupt = Interrupt::DMA2_CH3;
pub const DMA2_CH4: Interrupt = Interrupt::DMA2_CH4;
pub const DMA2_CH5: Interrupt = Interrupt::DMA2_CH5;
pub const DMA2_CH6: Interrupt = Interrupt::DMA2_CH6;
pub const DMA2_CH7: Interrupt = Interrupt::DMA2_CH7;
}
#[cfg(feature = "stm32wl5x_cm0p")]
mod irq_num {
use crate::pac::Interrupt;
pub const DMA1_CH1: Interrupt = Interrupt::DMA1_CH3_1;
pub const DMA1_CH2: Interrupt = Interrupt::DMA1_CH3_1;
pub const DMA1_CH3: Interrupt = Interrupt::DMA1_CH3_1;
pub const DMA1_CH4: Interrupt = Interrupt::DMA1_CH7_4;
pub const DMA1_CH5: Interrupt = Interrupt::DMA1_CH7_4;
pub const DMA1_CH6: Interrupt = Interrupt::DMA1_CH7_4;
pub const DMA1_CH7: Interrupt = Interrupt::DMA1_CH7_4;
pub const DMA2_CH1: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH2: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH3: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH4: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH5: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH6: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
pub const DMA2_CH7: Interrupt = Interrupt::DMA2_CH7_1_DMAMUX1_OVR;
}
dma_ch!(1, 1, DMA1_CH1);
dma_ch!(1, 2, DMA1_CH2);
dma_ch!(1, 3, DMA1_CH3);
dma_ch!(1, 4, DMA1_CH4);
dma_ch!(1, 5, DMA1_CH5);
dma_ch!(1, 6, DMA1_CH6);
dma_ch!(1, 7, DMA1_CH7);
dma_ch!(2, 1, DMA2_CH1);
dma_ch!(2, 2, DMA2_CH2);
dma_ch!(2, 3, DMA2_CH3);
dma_ch!(2, 4, DMA2_CH4);
dma_ch!(2, 5, DMA2_CH5);
dma_ch!(2, 6, DMA2_CH6);
dma_ch!(2, 7, DMA2_CH7);
/// All DMA channels.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct AllDma {
/// DMA controller 1.
pub d1: Dma1,
/// DMA controller 2.
pub d2: Dma2,
}
/// All DMA controller 1 channels.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Dma1 {
/// DMA controller 1 channel 1
pub c1: Dma1Ch1,
/// DMA controller 1 channel 2
pub c2: Dma1Ch2,
/// DMA controller 1 channel 3
pub c3: Dma1Ch3,
/// DMA controller 1 channel 4
pub c4: Dma1Ch4,
/// DMA controller 1 channel 5
pub c5: Dma1Ch5,
/// DMA controller 1 channel 6
pub c6: Dma1Ch6,
/// DMA controller 1 channel 7
pub c7: Dma1Ch7,
}
/// All DMA controller 2 channels.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Dma2 {
/// DMA controller 2 channel 1
pub c1: Dma2Ch1,
/// DMA controller 2 channel 2
pub c2: Dma2Ch2,
/// DMA controller 2 channel 3
pub c3: Dma2Ch3,
/// DMA controller 2 channel 4
pub c4: Dma2Ch4,
/// DMA controller 2 channel 5
pub c5: Dma2Ch5,
/// DMA controller 2 channel 6
pub c6: Dma2Ch6,
/// DMA controller 2 channel 7
pub c7: Dma2Ch7,
}
const DMA1: Dma1 = Dma1 {
c1: Dma1Ch1::new(),
c2: Dma1Ch2::new(),
c3: Dma1Ch3::new(),
c4: Dma1Ch4::new(),
c5: Dma1Ch5::new(),
c6: Dma1Ch6::new(),
c7: Dma1Ch7::new(),
};
const DMA2: Dma2 = Dma2 {
c1: Dma2Ch1::new(),
c2: Dma2Ch2::new(),
c3: Dma2Ch3::new(),
c4: Dma2Ch4::new(),
c5: Dma2Ch5::new(),
c6: Dma2Ch6::new(),
c7: Dma2Ch7::new(),
};
const ALL_DMA: AllDma = AllDma { d1: DMA1, d2: DMA2 };
impl AllDma {
/// Split the DMA registers into individual channels.
///
/// This will enable clocks and reset the DMA1, DMA2, and DMAMUX peripherals.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::AllDma, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let dma: AllDma = AllDma::split(dp.DMAMUX, dp.DMA1, dp.DMA2, &mut dp.RCC);
/// ```
#[allow(unused_variables)]
#[inline]
pub fn split(
dmamux: pac::DMAMUX,
dma1: pac::DMA1,
dma2: pac::DMA2,
rcc: &mut pac::RCC,
) -> Self {
Self::enable_clocks(rcc);
unsafe { Self::pulse_resets(rcc) };
ALL_DMA
}
/// Reset the DMA1, DMA2, and DMAMUX peripherals.
///
/// [`split`](Self::split) will pulse reset for you.
///
/// # Safety
///
/// 1. Ensure nothing is using the DMA1, DMA2, and DMAMUX peripherals
/// before calling this function.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub unsafe fn pulse_resets(rcc: &mut pac::RCC) {
rcc.ahb1rstr.modify(|_, w| {
w.dmamux1rst().set_bit();
w.dma2rst().set_bit();
w.dma1rst().set_bit()
});
rcc.ahb1rstr.modify(|_, w| {
w.dmamux1rst().clear_bit();
w.dma2rst().clear_bit();
w.dma1rst().clear_bit()
});
}
/// Enable clocks for the DMA1, DMA2, and DMAMUX peripherals.
///
/// [`split`](Self::split) will enable clocks for you.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub fn enable_clocks(rcc: &mut pac::RCC) {
rcc.ahb1enr.modify(|_, w| {
w.dmamux1en().enabled();
w.dma2en().enabled();
w.dma1en().enabled()
});
rcc.ahb1enr.read(); // delay after an RCC peripheral clock enabling
}
/// Disable clocks for the DMA1, DMA2, and DMAMUX peripherals.
///
/// # Safety
///
/// 1. Ensure nothing is using the DMA1, DMA2, and DMAMUX peripherals before
/// disabling the clock.
/// 2. You are responsible for re-enabling the clock before using the DMA1,
/// DMA2, and DMAMUX peripherals.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::AllDma, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let dma: AllDma = AllDma::split(dp.DMAMUX, dp.DMA1, dp.DMA2, &mut dp.RCC);
/// // ... use DMA channels
///
/// // safety: DMA is not in use
/// unsafe { AllDma::disable_clocks(&mut dp.RCC) };
///
/// // have a low power nap or something
///
/// AllDma::enable_clocks(&mut dp.RCC);
/// // ... use DMA channels
/// ```
#[inline]
pub unsafe fn disable_clocks(rcc: &mut pac::RCC) {
rcc.ahb1enr.modify(|_, w| {
w.dmamux1en().disabled();
w.dma2en().disabled();
w.dma1en().disabled()
});
}
/// Steal all DMA channels.
///
/// # Safety
///
/// 1. Ensure that the code stealing the DMA channels has exclusive access.
/// Singleton checks are bypassed with this method.
/// 2. You are responsible for resetting and enabling clocks on the
/// DMA1, DMA2, and DMAMUX peripherals.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::AllDma, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // DMAs cannot be used via registers now
/// let _: pac::DMA1 = dp.DMA1;
/// let _: pac::DMA2 = dp.DMA2;
/// let _: pac::DMAMUX = dp.DMAMUX;
///
/// // safety: nothing is using the peripherals
/// unsafe { AllDma::pulse_resets(&mut dp.RCC) };
///
/// AllDma::enable_clocks(&mut dp.RCC);
///
/// // safety
/// // 1. We have exclusive access
/// // 2. peripherals have been setup
/// let dmas: AllDma = unsafe { AllDma::steal() };
/// ```
#[inline]
pub const unsafe fn steal() -> Self {
ALL_DMA
}
}
impl Dma1 {
/// Split the DMA registers into individual channels.
///
/// This will enable clocks and reset the DMA1 and DMAMUX peripherals.
///
/// Most of the time you will want to use [`AllDma::split`].
/// This is provided for low-power use cases where you do not need
/// both DMA controllers.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::Dma1, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let dma1: Dma1 = Dma1::split(dp.DMAMUX, dp.DMA1, &mut dp.RCC);
/// ```
#[allow(unused_variables)]
#[inline]
pub fn split(dmamux: pac::DMAMUX, dma1: pac::DMA1, rcc: &mut pac::RCC) -> Self {
Self::enable_clocks(rcc);
unsafe { Self::pulse_resets(rcc) };
DMA1
}
/// Reset the DMA1 and DMAMUX peripherals.
///
/// [`split`](Self::split) will pulse reset for you.
///
/// # Safety
///
/// 1. Ensure nothing is using the DMA1, and DMAMUX peripherals
/// before calling this function.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub unsafe fn pulse_resets(rcc: &mut pac::RCC) {
rcc.ahb1rstr
.modify(|_, w| w.dmamux1rst().set_bit().dma1rst().set_bit());
rcc.ahb1rstr
.modify(|_, w| w.dmamux1rst().clear_bit().dma1rst().clear_bit());
}
/// Enable clocks for the DMA1 and DMAMUX peripherals.
///
/// [`split`](Self::split) will enable clocks for you.
///
/// # Example
///
/// See [`steal`](Self::steal).
#[inline]
pub fn enable_clocks(rcc: &mut pac::RCC) {
rcc.ahb1enr
.modify(|_, w| w.dmamux1en().enabled().dma1en().enabled());
rcc.ahb1enr.read(); // delay after an RCC peripheral clock enabling
}
/// Disable clocks for the DMA1 and DMAMUX peripherals.
///
/// # Safety
///
/// 1. Ensure nothing is using the DMA1, and DMAMUX peripherals before
/// disabling the clock.
/// 2. You are responsible for re-enabling the clock before using the DMA1,
/// and DMAMUX peripherals.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::Dma1, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let dma1: Dma1 = Dma1::split(dp.DMAMUX, dp.DMA1, &mut dp.RCC);
/// // ... use DMA channels
///
/// // safety: DMA is not in use
/// unsafe { Dma1::disable_clocks(&mut dp.RCC) };
///
/// // have a low power nap or something
///
/// Dma1::enable_clocks(&mut dp.RCC);
/// // ... use DMA channels
/// ```
#[inline]
pub unsafe fn disable_clocks(rcc: &mut pac::RCC) {
rcc.ahb1enr
.modify(|_, w| w.dmamux1en().disabled().dma1en().disabled());
}
/// Steal the DMA1 channels.
///
/// # Safety
///
/// 1. Ensure that the code stealing the DMA channels has exclusive access.
/// Singleton checks are bypassed with this method.
/// 2. You are responsible for resetting and enabling clocks on the
/// DMA1, and DMAMUX peripherals.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::Dma1, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // DMAs cannot be used via registers now
/// let _: pac::DMA1 = dp.DMA1;
/// let _: pac::DMAMUX = dp.DMAMUX;
///
/// // safety: nothing is using the peripherals
/// unsafe { Dma1::pulse_resets(&mut dp.RCC) };
///
/// Dma1::enable_clocks(&mut dp.RCC);
///
/// // safety
/// // 1. We have exclusive access
/// // 2. peripherals have been setup
/// let dmas: Dma1 = unsafe { Dma1::steal() };
/// ```
#[inline]
pub const unsafe fn steal() -> Self {
DMA1
}
}