1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
//! Flash memory
//!
//! Quickstart:
//!
//! 1. [`Flash::unlock`]
//! 2. [`Flash::page_erase`]
//! 3. [`Flash::program_bytes`]
use crate::pac;
use core::{mem::size_of, ops::Range, ptr::write_volatile, slice::ChunksExact};
use num_integer::Integer;
/// Starting address of the flash memory.
pub const FLASH_START: usize = 0x0800_0000;
/// Ending address of the flash memory.
///
/// This is calculated at runtime using the info registers.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::flash::flash_end;
///
/// // valid for the nucleo-wl55jc with 256k flash
/// assert_eq!(flash_end(), 0x0803_FFFF);
/// ```
#[inline]
pub fn flash_end() -> usize {
const OFFSET: usize = FLASH_START - 1;
OFFSET + crate::info::flash_size() as usize
}
/// Range of flash memory.
///
/// This is calculated at runtime using the info registers.
///
/// # Example
///
/// ```no_run
/// use core::ops::Range;
/// use stm32wlxx_hal::flash::flash_range;
///
/// // valid for the nucleo-wl55jc with 256k flash
/// assert_eq!(
/// flash_range(),
/// Range {
/// start: 0x0800_0000,
/// end: 0x0804_0000
/// }
/// );
/// assert!(flash_range().contains(&0x0800_0000));
/// assert!(flash_range().contains(&0x0803_FFFF));
/// assert!(!flash_range().contains(&0x0804_0000));
/// ```
#[inline]
pub fn flash_range() -> Range<usize> {
Range {
start: FLASH_START,
end: FLASH_START + crate::info::flash_size() as usize,
}
}
/// Number of flash pages.
///
/// This is calculated at runtime using the info registers.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::flash::num_pages;
///
/// // valid for the nucleo-wl55jc with 256k flash
/// assert_eq!(num_pages(), 0x80);
/// ```
#[inline]
pub fn num_pages() -> u8 {
(crate::info::flash_size_kibibyte() / 2) as u8
}
// status register (SR) flags
mod flags {
pub const PROGERR: u32 = 1 << 3;
pub const WRPERR: u32 = 1 << 4;
pub const PGAERR: u32 = 1 << 5;
pub const SIZERR: u32 = 1 << 6;
pub const PGSERR: u32 = 1 << 7;
pub const MISSERR: u32 = 1 << 8;
pub const BSY: u32 = 1 << 16;
pub const PESD: u32 = 1 << 19;
}
/// Page address.
#[derive(Debug, PartialEq, Eq, Clone, Copy, PartialOrd, Ord, Hash)]
pub struct Page {
idx: u8,
}
impl Page {
/// Page size in bytes.
pub const SIZE: usize = 2048;
/// Create a page address from an index without checking bounds.
///
/// # Safety
///
/// 1. The `idx` argument must be a valid page number, less than the value
/// returned by [`num_pages`].
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::flash::Page;
///
/// let page0 = unsafe { Page::from_index_unchecked(0) };
/// ```
#[inline]
pub const unsafe fn from_index_unchecked(idx: u8) -> Self {
Page { idx }
}
/// Create a page address from an index.
///
/// Returns `None` if the value index is greater than the index of the last
/// page, for example `0x7F` (page 127) on the STM32WLE5.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::flash::Page;
///
/// assert!(Page::from_index(8).is_some());
/// assert!(Page::from_index(128).is_none());
/// ```
pub fn from_index(idx: u8) -> Option<Self> {
if idx >= num_pages() {
None
} else {
Some(Page { idx })
}
}
/// Create a page address from an offset from the base of the flash memory.
///
/// Returns `None` if the address is out of bounds, or not page aligned.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::flash::Page;
///
/// assert_eq!(Page::from_byte_offset(0), Page::from_index(0));
/// assert_eq!(Page::from_byte_offset(2048), Page::from_index(1));
/// assert!(Page::from_byte_offset(2047).is_none());
/// assert!(Page::from_byte_offset(usize::MAX).is_none());
/// ```
pub fn from_byte_offset(offset: usize) -> Option<Self> {
if offset % Self::SIZE == 0 {
let idx: usize = offset / Self::SIZE;
if idx >= usize::from(num_pages()) {
None
} else {
Some(Page { idx: idx as u8 })
}
} else {
None
}
}
/// Create a page address from an absolute address.
///
/// Returns `None` if the address is out of bounds, or not page aligned.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::flash::Page;
///
/// assert_eq!(Page::from_addr(0x0800_0000), Page::from_index(0));
/// assert_eq!(Page::from_addr(0x0800_0800), Page::from_index(1));
/// assert!(Page::from_addr(0).is_none());
/// assert!(Page::from_addr(usize::MAX).is_none());
/// assert!(Page::from_addr(0x0800_0001).is_none());
/// ```
pub fn from_addr(addr: usize) -> Option<Self> {
if let Some(offset) = addr.checked_sub(FLASH_START) {
Self::from_byte_offset(offset)
} else {
None
}
}
/// Get the page index.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::flash::Page;
///
/// let page7 = unsafe { Page::from_index_unchecked(7) };
/// assert_eq!(page7.to_index(), 7);
/// ```
#[inline]
pub const fn to_index(self) -> u8 {
self.idx
}
/// Get the page address.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::flash::Page;
///
/// let page127 = unsafe { Page::from_index_unchecked(127) };
/// let page0 = unsafe { Page::from_index_unchecked(0) };
///
/// assert_eq!(page0.addr(), 0x0800_0000);
/// assert_eq!(page127.addr(), 0x0803_F800);
/// ```
pub const fn addr(&self) -> usize {
(self.idx as usize) * Self::SIZE + FLASH_START
}
/// Get the address range of the page.
///
/// # Example
///
/// ```
/// use core::ops::Range;
/// use stm32wlxx_hal::flash::Page;
///
/// let page0 = unsafe { Page::from_index_unchecked(0) };
/// assert_eq!(
/// page0.addr_range(),
/// Range {
/// start: 0x0800_0000,
/// end: 0x0800_0800
/// }
/// );
/// ```
pub const fn addr_range(&self) -> Range<usize> {
Range {
start: self.addr(),
end: self.addr() + Page::SIZE,
}
}
}
impl From<Page> for AlignedAddr {
#[inline]
fn from(page: Page) -> Self {
AlignedAddr { addr: page.addr() }
}
}
/// Error for conversions to [`AlignedAddr`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct AlignedAddrError(pub(crate) ());
impl AlignedAddrError {
pub(crate) const fn new() -> Self {
Self(())
}
}
/// A `u64` aligned flash address.
///
/// An argument of [`Flash::program_bytes`].
///
/// # Example
///
/// Create an aligned flash address by converting from `usize`.
///
/// ```no_run
/// use stm32wlxx_hal::flash::AlignedAddr;
///
/// let addr: AlignedAddr = AlignedAddr::try_from(0x0803_F800_usize)?;
/// # Ok::<(), stm32wlxx_hal::flash::AlignedAddrError>(())
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct AlignedAddr {
addr: usize,
}
impl AlignedAddr {
/// Create a page address from an index without checking bounds.
///
/// # Safety
///
/// 1. The `addr` argument must be a multiple of 8.
/// 2. The `addr` argument must be a valid flash address, within the range
/// returned by [`flash_range`].
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::flash::Page;
///
/// let page0 = unsafe { Page::from_index_unchecked(0) };
/// ```
pub const unsafe fn new_unchecked(addr: usize) -> Self {
Self { addr }
}
}
impl From<AlignedAddr> for usize {
#[inline]
fn from(addr: AlignedAddr) -> Self {
addr.addr
}
}
impl From<AlignedAddr> for u32 {
#[inline]
fn from(addr: AlignedAddr) -> Self {
addr.addr as u32
}
}
impl TryFrom<u32> for AlignedAddr {
type Error = AlignedAddrError;
fn try_from(addr: u32) -> Result<Self, Self::Error> {
Self::try_from(addr as usize)
}
}
impl TryFrom<usize> for AlignedAddr {
type Error = AlignedAddrError;
fn try_from(addr: usize) -> Result<Self, Self::Error> {
if addr % size_of::<u64>() != 0 || !flash_range().contains(&addr) {
Err(AlignedAddrError::new())
} else {
Ok(AlignedAddr { addr })
}
}
}
/// Flash errors.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Busy error.
///
/// A flash programming sequence was started while the previous sequence
/// was still in-progress.
Busy,
/// Program erase suspend error.
///
/// A flash programming sequence was started with a program erase suspend
/// bit set.
Suspend,
/// Overflow error.
///
/// Returned by [`Flash::standard_program_generic`], or [`Flash::program_bytes`]
/// when the target data and address would exceed the end of flash memory.
Overflow,
/// Fast programming data miss error.
///
/// In Fast programming mode, 32 double-words (256 bytes) must be sent to
/// the flash memory successively and the new data must be sent to the logic
/// control before the current data is fully programmed.
///
/// This bit is set by hardware when the new data is not present in time.
Miss,
/// Programming sequence error.
///
/// This bit is set by hardware when a write access to the flash memory is
/// performed by the code, while PG or FSTPG have not been set previously.
///
/// This bit is also set by hardware when PROGERR, SIZERR, PGAERR, WRPERR,
/// MISSERR or FASTERR is set due to a previous programming error.
Seq,
/// Size error.
///
/// This bit is set by hardware when the size of the access is a byte (`u8`)
/// or half-word (`u16`) during a program or a fast program sequence.
/// Only double-word (`u64`) programming is allowed (consequently: word (`u32`) access).
Size,
/// Programming alignment error.
///
/// This bit is set by hardware when the data to program cannot be contained in the same
/// double-word (`u64`) Flash memory in case of standard programming, or if there is a change
/// of page during fast programming.
Align,
/// Write protection error.
///
/// An address to be erased/programmed belongs to a write-protected part
/// (by WRP, PCROP or RDP level 1) of the flash memory.
Wp,
/// Programming error.
///
/// A 64-bit address to be programmed contains a value different from
/// `0xFFFF_FFFF_FFFF_FFFF` before programming, except if the data to write
/// is `0x0000_0000_0000_0000`.
///
/// The erratum states that this will also occur when programming
/// `0x0000_0000_0000_0000` to a location previously programmed with
/// `0xFFFF_FFFF_FFFF_FFFF`.
Prog,
}
/// Flash driver.
#[derive(Debug)]
pub struct Flash<'a> {
flash: &'a mut pac::FLASH,
}
impl Drop for Flash<'_> {
fn drop(&mut self) {
// despite what RM0453 Rev 2 says there is no separate lock for core 2
// as far as I can tell
self.flash.cr.modify(|_, w| w.lock().set_bit())
}
}
impl<'a> Flash<'a> {
/// Unlock the flash memory for program or erase operations.
///
/// The flash memory will be locked when this struct is dropped.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{flash::Flash, pac};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let mut flash: Flash = Flash::unlock(&mut dp.FLASH);
/// ```
pub fn unlock(flash: &'a mut pac::FLASH) -> Self {
flash.keyr.write(|w| w.key().bits(0x4567_0123));
flash.keyr.write(|w| w.key().bits(0xCDEF_89AB));
Self { flash }
}
#[inline(always)]
fn sr(&self) -> u32 {
c1_c2!(self.flash.sr.read().bits(), self.flash.c2sr.read().bits())
}
#[inline(always)]
fn clear_all_err(&mut self) {
c1_c2!(
self.flash.sr.write(|w| {
w.rderr().clear();
w.fasterr().clear();
w.misserr().clear();
w.pgserr().clear();
w.sizerr().clear();
w.pgaerr().clear();
w.wrperr().clear();
w.progerr().clear();
w.operr().clear();
w.eop().clear()
}),
self.flash.c2sr.write(|w| {
w.rderr().clear();
w.fasterr().clear();
w.misserr().clear();
w.pgserr().clear();
w.sizerr().clear();
w.pgaerr().clear();
w.wrperr().clear();
w.progerr().clear();
w.operr().clear();
w.eop().clear()
}),
)
}
#[inline(always)]
fn wait_for_not_busy(&self) -> Result<(), Error> {
loop {
let sr: u32 = self.sr();
// "This bit is set at the beginning of a Flash operation and
// reset when the operation finishes or when an error occurs."
if sr & flags::BSY == 0 {
if sr & flags::PROGERR == flags::PROGERR {
return Err(Error::Prog);
}
if sr & flags::WRPERR == flags::WRPERR {
return Err(Error::Wp);
}
if sr & flags::PGAERR == flags::PGAERR {
return Err(Error::Align);
}
if sr & flags::SIZERR == flags::SIZERR {
return Err(Error::Size);
}
if sr & flags::MISSERR == flags::MISSERR {
return Err(Error::Miss);
}
// check last because it can be set with other flags
if sr & flags::PGSERR == flags::PGSERR {
return Err(Error::Seq);
}
return Ok(());
}
}
}
/// Program 8 bytes.
///
/// # Safety
///
/// 1. Do not write to flash memory that is being used for your code.
/// 2. The destination address must be within the flash memory region.
/// 3. The `from` and `to` pointers must be aligned to the pointee type.
#[allow(unused_unsafe)]
pub unsafe fn standard_program(&mut self, from: *const u64, to: *mut u64) -> Result<(), Error> {
let sr: u32 = self.sr();
if sr & flags::BSY != 0 {
return Err(Error::Busy);
}
if sr & flags::PESD != 0 {
return Err(Error::Suspend);
}
self.clear_all_err();
c1_c2!(
self.flash.cr.modify(|_, w| w.pg().set_bit()),
self.flash.c2cr.modify(|_, w| w.pg().set_bit())
);
unsafe {
write_volatile(to as *mut u32, (from as *const u32).read());
write_volatile(
(to as *mut u32).offset(1),
(from as *const u32).offset(1).read(),
);
}
let ret: Result<(), Error> = self.wait_for_not_busy();
c1_c2!(
self.flash.cr.modify(|_, w| w.pg().clear_bit()),
self.flash.c2cr.modify(|_, w| w.pg().clear_bit())
);
ret
}
/// Program any number of bytes.
///
/// This is the safest possible method for programming.
///
/// # Safety
///
/// 1. Do not write to flash memory that is being used for your code.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// flash::{Flash, Page},
/// pac,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let my_data: [u8; 3] = [0x14, 0x15, 0x16];
///
/// let last_page: Page = Page::from_index(127).unwrap();
///
/// let mut flash: Flash = Flash::unlock(&mut dp.FLASH);
/// unsafe {
/// flash.page_erase(last_page)?;
/// flash.program_bytes(&my_data, last_page.into())?;
/// }
/// # Ok::<(), stm32wlxx_hal::flash::Error>(())
/// ```
pub unsafe fn program_bytes(&mut self, from: &[u8], to: AlignedAddr) -> Result<(), Error> {
if from.is_empty() {
return Ok(());
}
if !flash_range().contains(&usize::from(to).saturating_add(from.len())) {
return Err(Error::Overflow);
}
let chunks_exact: ChunksExact<u8> = from.chunks_exact(8);
let remainder: &[u8] = chunks_exact.remainder();
let remainder_len: usize = remainder.len();
let last_u64: u64 = chunks_exact
.remainder()
.iter()
.enumerate()
.fold(0, |acc, (n, byte)| acc | u64::from(*byte) << (8 * n));
for (n, chunk) in chunks_exact.enumerate() {
let chunk_u64: u64 = u64::from_le_bytes(chunk.try_into().unwrap());
let addr: usize = n * size_of::<u64>() + usize::from(to);
self.standard_program(&chunk_u64, addr as *mut u64)?;
}
if remainder_len != 0 {
let last_addr: usize = (usize::from(to) + from.len()).prev_multiple_of(&8);
self.standard_program(&last_u64, last_addr as *mut u64)?;
}
Ok(())
}
/// Program a user-defined type.
///
/// # Safety
///
/// 1. Do not write to flash memory that is being used for your code.
/// 2. The destination address must be within the flash memory region.
/// 3. The `from` and `to` pointers must be aligned to `u64`.
/// Use `#[repr(align(8))]` to align your structure.
#[allow(unused_unsafe)]
pub unsafe fn standard_program_generic<T>(
&mut self,
from: *const T,
to: *mut T,
) -> Result<(), Error> {
let size: isize = size_of::<T>() as isize;
if size == 0 {
return Ok(());
}
if !flash_range().contains(&(size_of::<T>() + to as usize)) {
return Err(Error::Overflow);
}
let sr: u32 = self.sr();
if sr & flags::BSY != 0 {
return Err(Error::Busy);
}
if sr & flags::PESD != 0 {
return Err(Error::Suspend);
}
self.clear_all_err();
c1_c2!(
self.flash.cr.modify(|_, w| w.pg().set_bit()),
self.flash.c2cr.modify(|_, w| w.pg().set_bit())
);
// Calculate the index of the last double word
#[allow(unstable_name_collisions)]
let last_double_word_idx: isize = size.div_ceil(&8) - 1;
// Write the type as double words and return the number of bytes written
let written_bytes: isize = (0..last_double_word_idx).fold(0, |acc, n| {
unsafe {
write_volatile(
(to as *mut u64).offset(n),
(from as *const u64).offset(n).read(),
)
};
acc + 8
});
// Determine how many bytes are left to write
let bytes_left: isize = size - written_bytes;
// Append the left over bytes to a double word,
// the last few bytes can look random in flash memory since Rust uses memory alignment to make accessing faster.
let last_double_word: u64 = (0..bytes_left).fold(0, |dw, n| {
let byte: u8 = (from as *const u8).offset(written_bytes + n).read();
dw | u64::from(byte) << (8 * n)
});
// Write the last double word
unsafe {
write_volatile(
(to as *mut u64).offset(last_double_word_idx),
(&last_double_word as *const u64).read(),
)
};
let ret: Result<(), Error> = self.wait_for_not_busy();
c1_c2!(
self.flash.cr.modify(|_, w| w.pg().clear_bit()),
self.flash.c2cr.modify(|_, w| w.pg().clear_bit())
);
ret
}
/// Program 256 bytes.
///
/// # Safety
///
/// 1. Do not write to flash memory that is being used for your code.
/// 2. The destination address must be within the flash memory region.
/// 3. The flash clock frequency (HCLK3) must be at least 8 MHz.
/// 4. The `from` and `to` pointers must be aligned to the pointee type.
/// 5. The `from` pointer must point to 256 bytes of valid data.
/// 6. The CPU must execute this from SRAM.
/// The compiler may inline this function, because `#[inline(never)]` is
/// merely a suggestion.
#[allow(unused_unsafe)]
#[cfg_attr(target_os = "none", link_section = ".data")]
#[inline(never)]
pub unsafe fn fast_program(&mut self, from: *const u64, to: *mut u64) -> Result<(), Error> {
let sr: u32 = self.sr();
if sr & flags::BSY != 0 {
return Err(Error::Busy);
}
if sr & flags::PESD != 0 {
return Err(Error::Suspend);
}
self.clear_all_err();
c1_c2!(
self.flash.cr.modify(|_, w| w.fstpg().set_bit()),
self.flash.c2cr.modify(|_, w| w.fstpg().set_bit())
);
let from: *const u32 = from as *const u32;
let to: *mut u32 = to as *mut u32;
(0..64)
.for_each(|word| unsafe { write_volatile(to.offset(word), from.offset(word).read()) });
let ret: Result<(), Error> = self.wait_for_not_busy();
c1_c2!(
self.flash.cr.modify(|_, w| w.fstpg().clear_bit()),
self.flash.c2cr.modify(|_, w| w.fstpg().clear_bit())
);
ret
}
/// Erases a 2048 byte page, setting all the bits to `1`.
///
/// # Safety
///
/// 1. Do not erase flash memory that is being used for your code.
///
/// # Example
///
/// Erase the last page.
///
/// ```no_run
/// use stm32wlxx_hal::{
/// flash::{Flash, Page},
/// pac,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let last_page: Page = Page::from_index(127).unwrap();
///
/// let mut flash: Flash = Flash::unlock(&mut dp.FLASH);
/// unsafe { flash.page_erase(last_page)? };
/// # Ok::<(), stm32wlxx_hal::flash::Error>(())
/// ```
pub unsafe fn page_erase(&mut self, page: Page) -> Result<(), Error> {
let sr: u32 = self.sr();
if sr & flags::BSY != 0 {
return Err(Error::Busy);
}
if sr & flags::PESD != 0 {
return Err(Error::Suspend);
}
self.clear_all_err();
c1_c2!(
self.flash.cr.modify(|_, w| w
.per()
.set_bit()
.pnb()
.bits(page.to_index())
.strt()
.set_bit()),
self.flash.c2cr.modify(|_, w| w
.per()
.set_bit()
.pnb()
.bits(page.to_index())
.strt()
.set_bit())
);
let ret: Result<(), Error> = self.wait_for_not_busy();
c1_c2!(
self.flash.cr.modify(|_, w| w.per().clear_bit()),
self.flash.c2cr.modify(|_, w| w.per().clear_bit())
);
ret
}
/// Erases the entire flash memory, setting all the bits to `1`.
///
/// # Safety
///
/// 1. The CPU must execute this from SRAM.
/// The compiler may inline this function, because `#[inline(never)]` is
/// merely a suggestion.
#[cfg_attr(target_os = "none", link_section = ".data")]
#[inline(never)]
pub unsafe fn mass_erase(&mut self) -> Result<(), Error> {
let sr: u32 = self.sr();
if sr & flags::BSY != 0 {
return Err(Error::Busy);
}
if sr & flags::PESD != 0 {
return Err(Error::Suspend);
}
self.clear_all_err();
c1_c2!(
self.flash
.cr
.modify(|_, w| w.mer().set_bit().strt().set_bit()),
self.flash
.c2cr
.modify(|_, w| w.mer().set_bit().strt().set_bit())
);
let ret: Result<(), Error> = self.wait_for_not_busy();
c1_c2!(
self.flash.cr.modify(|_, w| w.mer().clear_bit()),
self.flash.c2cr.modify(|_, w| w.mer().clear_bit())
);
ret
}
}