1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
//! Inter-Integrated Circuit (I2C) bus
use crate::{
embedded_hal::blocking::i2c::{Read, Write, WriteRead},
gpio::{OutputType, Pull},
pac::{self, rcc::ccipr::I2C3SEL_A, I2C1, I2C2, I2C3, RCC},
rcc::{pclk1_hz, sysclk_hz},
};
use cortex_m::interrupt::CriticalSection;
/// I2C error
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Arbitration loss
Arbitration,
/// Bus error
Bus,
/// Bus busy
Busy,
/// Not Acknowledge received
Nack,
/* Overrun, // slave mode only
* Pec, // SMBUS mode only
* Timeout, // SMBUS mode only
* Alert, // SMBUS mode only */
}
/// I2C1 peripheral operating in master mode
#[derive(Debug)]
pub struct I2c1<PINS> {
base: I2C1,
pins: PINS,
}
/// I2C2 peripheral operating in master mode
#[derive(Debug)]
pub struct I2c2<PINS> {
base: I2C2,
pins: PINS,
}
/// I2C3 peripheral operating in master mode
#[derive(Debug)]
pub struct I2c3<PINS> {
base: I2C3,
pins: PINS,
}
macro_rules! busy_wait {
($self:ident, $flag:ident, $variant:ident) => {
loop {
let isr = $self.isr().read();
let icr = $self.icr();
if isr.arlo().is_lost() {
icr.write(|w| w.arlocf().clear());
return Err(Error::Arbitration);
// Bus error should be ignored during Master mode. See STM doc. nr. ES0500 (Erratum).
// Leaving this code here in case it can be used when implementing slave mode
// } else if isr.berr().is_error() {
// icr.write(|w| w.berrcf().clear());
// return Err(Error::Bus);
} else if isr.nackf().is_nack() {
while $self.isr().read().stopf().is_no_stop() {}
icr.write(|w| w.nackcf().clear());
icr.write(|w| w.stopcf().clear());
return Err(Error::Nack);
} else if isr.$flag().$variant() {
break;
}
}
};
}
trait I2cBase {
fn cr1(&self) -> &pac::i2c1::CR1;
fn cr2(&self) -> &pac::i2c1::CR2;
fn icr(&self) -> &pac::i2c1::ICR;
fn isr(&self) -> &pac::i2c1::ISR;
fn oar1(&self) -> &pac::i2c1::OAR1;
fn oar2(&self) -> &pac::i2c1::OAR2;
fn pecr(&self) -> &pac::i2c1::PECR;
fn rxdr(&self) -> &pac::i2c1::RXDR;
fn timeoutr(&self) -> &pac::i2c1::TIMEOUTR;
fn timingr(&self) -> &pac::i2c1::TIMINGR;
fn txdr(&self) -> &pac::i2c1::TXDR;
/// Read `buffer.len()` bytes from `addr`
///
/// # Panics
///
/// * Empty buffer (`buffer.len() == 0`)
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> {
assert!(!buffer.is_empty());
// Detect Bus busy
if self.isr().read().busy().is_busy() {
return Err(Error::Busy);
}
let end = buffer.len() / 0xFF;
// Process 255 bytes at a time
for (i, buffer) in buffer.chunks_mut(0xFF).enumerate() {
// Prepare to receive `bytes`
self.cr2().modify(|_, w| {
if i == 0 {
w.add10().bit7();
w.sadd().bits((addr << 1) as u16);
w.rd_wrn().read();
w.start().start();
}
w.nbytes().bits(buffer.len() as u8);
if i != end {
w.reload().not_completed()
} else {
w.reload().completed().autoend().automatic()
}
});
for byte in buffer {
// Wait until we have received something
busy_wait!(self, rxne, is_not_empty);
*byte = self.rxdr().read().rxdata().bits();
}
if i != end {
// Wait until the last transmission is finished
busy_wait!(self, tcr, is_complete);
}
}
// automatic STOP
// Wait until the last transmission is finished
busy_wait!(self, stopf, is_stop);
self.icr().write(|w| w.stopcf().clear());
Ok(())
}
/// Write `bytes.len()` bytes to `addr`. 0-byte writes are allowed, in which case the master
/// will just write the address
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
// Detect Bus busy
if self.isr().read().busy().is_busy() {
return Err(Error::Busy);
}
if bytes.is_empty() {
// 0 byte write
self.cr2().modify(|_, w| {
w.add10().bit7();
w.sadd().bits((addr << 1) as u16);
w.rd_wrn().write();
w.nbytes().bits(0);
w.reload().completed();
w.autoend().automatic();
w.start().start()
});
} else {
let end = bytes.len() / 0xFF;
// Process 255 bytes at a time
for (i, bytes) in bytes.chunks(0xFF).enumerate() {
// Prepare to send `bytes`
self.cr2().modify(|_, w| {
if i == 0 {
w.add10().bit7();
w.sadd().bits((addr << 1) as u16);
w.rd_wrn().write();
w.start().start();
}
w.nbytes().bits(bytes.len() as u8);
if i != end {
w.reload().not_completed()
} else {
w.reload().completed().autoend().automatic()
}
});
for byte in bytes {
// Wait until we are allowed to send data
// (START has been ACKed or last byte went through)
busy_wait!(self, txis, is_empty);
// Put byte on the wire
// NOTE(write): Writes all non-reserved bits.
self.txdr().write(|w| w.txdata().bits(*byte));
}
if i != end {
// Wait until the last transmission is finished
busy_wait!(self, tcr, is_complete);
}
}
}
// automatic STOP
// Wait until the last transmission is finished
busy_wait!(self, stopf, is_stop);
self.icr().write(|w| w.stopcf().clear());
Ok(())
}
/// Write `bytes.len()` bytes to `addr` and read back `buffer.len()` bytes.
///
/// # Panics
///
/// * `bytes` or `buffer` are empty (use `write` for 0-byte writes)
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
assert!(!bytes.is_empty() && !buffer.is_empty());
// Detect Bus busy
if self.isr().read().busy().is_busy() {
return Err(Error::Busy);
}
let end = bytes.len() / 0xFF;
// Process 255 bytes at a time
for (i, bytes) in bytes.chunks(0xFF).enumerate() {
// Prepare to send `bytes`
self.cr2().modify(|_, w| {
if i == 0 {
w.add10().bit7();
w.sadd().bits((addr << 1) as u16);
w.rd_wrn().write();
w.start().start();
}
w.nbytes().bits(bytes.len() as u8);
if i != end {
w.reload().not_completed()
} else {
w.reload().completed().autoend().software()
}
});
for byte in bytes {
// Wait until we are allowed to send data
// (START has been ACKed or last byte went through)
busy_wait!(self, txis, is_empty);
// Put byte on the wire
// NOTE(write): Writes all non-reserved bits.
self.txdr().write(|w| w.txdata().bits(*byte));
}
if i != end {
// Wait until the last transmission is finished
busy_wait!(self, tcr, is_complete);
}
}
// Wait until the last transmission is finished
busy_wait!(self, tc, is_complete);
// restart
let end = buffer.len() / 0xFF;
// Process 255 bytes at a time
for (i, buffer) in buffer.chunks_mut(0xFF).enumerate() {
// Prepare to receive `bytes`
self.cr2().modify(|_, w| {
if i == 0 {
w.add10().bit7();
w.sadd().bits((addr << 1) as u16);
w.rd_wrn().read();
w.start().start();
}
w.nbytes().bits(buffer.len() as u8);
if i != end {
w.reload().not_completed()
} else {
w.reload().completed().autoend().automatic()
}
});
for byte in buffer {
// Wait until we have received something
busy_wait!(self, rxne, is_not_empty);
*byte = self.rxdr().read().rxdata().bits();
}
if i != end {
// Wait until the last transmission is finished
busy_wait!(self, tcr, is_complete);
}
}
// automatic STOP
// Wait until the last transmission is finished
busy_wait!(self, stopf, is_stop);
self.icr().write(|w| w.stopcf().clear());
Ok(())
}
}
#[rustfmt::skip]
macro_rules! impl_i2c_base_for {
($($name:ident)+) => {
$(
impl I2cBase for $name {
#[inline(always)] fn cr1(&self) -> &pac::i2c1::CR1 { &self.cr1 }
#[inline(always)] fn cr2(&self) -> &pac::i2c1::CR2 { &self.cr2 }
#[inline(always)] fn icr(&self) -> &pac::i2c1::ICR { &self.icr }
#[inline(always)] fn isr(&self) -> &pac::i2c1::ISR { &self.isr }
#[inline(always)] fn oar1(&self) -> &pac::i2c1::OAR1 { &self.oar1 }
#[inline(always)] fn oar2(&self) -> &pac::i2c1::OAR2 { &self.oar2 }
#[inline(always)] fn pecr(&self) -> &pac::i2c1::PECR { &self.pecr }
#[inline(always)] fn rxdr(&self) -> &pac::i2c1::RXDR { &self.rxdr }
#[inline(always)] fn timeoutr(&self) -> &pac::i2c1::TIMEOUTR { &self.timeoutr }
#[inline(always)] fn timingr(&self) -> &pac::i2c1::TIMINGR { &self.timingr }
#[inline(always)] fn txdr(&self) -> &pac::i2c1::TXDR { &self.txdr }
}
)+
};
}
macro_rules! impl_clocks_reset {
($($I2cX:ident: ($i2cXen:ident, $i2cXrst:ident, $i2cXsel:ident),)+) => {
$(
impl<SCL, SDA> $I2cX<(SCL, SDA)> {
/// Enables peripheral clock
fn enable_clock(rcc: &mut RCC) {
rcc.apb1enr1.modify(|_, w| w.$i2cXen().enabled());
}
/// Resets peripheral clock
fn pulse_reset(rcc: &mut RCC) {
rcc.apb1rstr1.modify(|_, w| w.$i2cXrst().reset());
rcc.apb1rstr1.modify(|_, w| w.$i2cXrst().clear_bit());
}
/// Returns the frequency of the peripheral clock driver
fn clock(rcc: &RCC) -> u32 {
// NOTE(unsafe) atomic read with no side effects
match rcc.ccipr.read().$i2cXsel().variant().unwrap() {
I2C3SEL_A::Hsi16 => 16_000_000,
I2C3SEL_A::Sysclk => sysclk_hz(rcc),
I2C3SEL_A::Pclk => pclk1_hz(rcc),
}
}
}
)+
}
}
macro_rules! impl_new_free {
($($I2cX:ident: ($I2CX:ident, $i2cXen:ident, $i2cXrst:ident, $i2cXsel:ident,
$I2cXSda:ident, $I2cXScl:ident, $i2cXsclAf:ident, $i2cXsdaAf:ident),)+) => {
$(
impl<SCL, SDA> $I2cX<(SCL, SDA)> {
/// Configures the I2C peripheral as master with the indicated frequency. The implementation takes care
/// of setting the peripheral to standard/fast mode depending on the indicated frequency and generates
/// values for SCLL and SCLH durations
///
/// # Panics
///
/// * Frequency is greater than 1 MHz
/// * Resulting TIMINGR fields PRESC, SCLDEL, SCADEL, SCLH, SCLL are out of range
pub fn new(i2c: $I2CX, mut pins: (SCL, SDA), freq_hz: u32, rcc: &mut RCC, pullup: bool, cs: &CriticalSection) -> Self
where
SCL: crate::gpio::sealed::$I2cXScl + crate::gpio::sealed::PinOps,
SDA: crate::gpio::sealed::$I2cXSda + crate::gpio::sealed::PinOps,
{
assert!(freq_hz <= 1_000_000); // TODO Return Error instead of panic
Self::enable_clock(rcc);
Self::pulse_reset(rcc);
pins.0.set_output_type(cs, OutputType::OpenDrain);
pins.1.set_output_type(cs, OutputType::OpenDrain);
pins.0.$i2cXsclAf(cs);
pins.1.$i2cXsdaAf(cs);
if (pullup) {
pins.0.set_pull(cs, Pull::Up);
pins.1.set_pull(cs, Pull::Up);
} else {
pins.0.set_pull(cs, Pull::None);
pins.1.set_pull(cs, Pull::None);
}
let (presc, scll, sclh, sdadel, scldel) = i2c_clocks(Self::clock(rcc), freq_hz);
// Configure for "fast mode" (400 KHz)
// NOTE(write): writes all non-reserved bits.
i2c.timingr.write(|w| {
w.presc()
.bits(presc)
.sdadel()
.bits(sdadel)
.scldel()
.bits(scldel)
.scll()
.bits(scll)
.sclh()
.bits(sclh)
});
// Enable the peripheral
i2c.cr1.write(|w| w.pe().set_bit());
Self { base: i2c, pins }
}
/// Releases the I2C peripheral and associated pins
pub fn free(self) -> ($I2CX, (SCL, SDA)) {
(self.base, self.pins)
}
}
)+
}
}
macro_rules! impl_read {
($($I2cX:ident)+) => {
$(
impl<PINS> Read for $I2cX<PINS> {
type Error = Error;
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.base.read(addr, buffer)
}
}
)+
}
}
macro_rules! impl_write {
($($I2cX:ident)+) => {
$(
impl<PINS> Write for $I2cX<PINS> {
type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Self::Error> {
self.base.write(addr, bytes)
}
}
)+
}
}
macro_rules! impl_write_read {
($($I2cX:ident)+) => {
$(
impl<PINS> WriteRead for $I2cX<PINS> {
type Error = Error;
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
self.base.write_read(addr, bytes, buffer)
}
}
)+
}
}
macro_rules! i2c {
([ $($X:literal),+ ]) => {
paste::paste! {
impl_i2c_base_for!($([<I2C $X>])+);
impl_clocks_reset!($([<I2c $X>]: ([<i2c $X en>], [<i2c $X rst>], [<i2c $X sel>]),)+);
impl_new_free!($([<I2c $X>]: ([<I2C $X>], [<i2c $X en>], [<i2c $X rst>], [<i2c $X sel>], [<I2c $X Sda>],
[<I2c $X Scl>], [<set_i2c $X _scl_af>], [<set_i2c $X _sda_af>]),)+);
impl_read!($([<I2c $X>])+);
impl_write!($([<I2c $X>])+);
impl_write_read!($([<I2c $X>])+);
}
};
}
i2c!([1, 2, 3]);
// TODO review compliance with the timing requirements of I2C
// t_I2CCLK = 1 / PCLK1
// t_PRESC = (PRESC + 1) * t_I2CCLK
// t_SCLL = (SCLL + 1) * t_PRESC
// t_SCLH = (SCLH + 1) * t_PRESC
//
// t_SYNC1 + t_SYNC2 > 4 * t_I2CCLK
// t_SCL ~= t_SYNC1 + t_SYNC2 + t_SCLL + t_SCLH
/// Returns the I2C parameters necessary to configure the peripheral.
///
/// # Parameters
/// * clock: the frequency of the clock driving the I2C peripheral
/// * freq: the desired frequency for the I2C peripheral
///
/// # Returns:
/// * PRESC
/// * SCLL
/// * SCLH
/// * SDADEL
/// * SCLDEL
fn i2c_clocks(clock_hz: u32, freq_hz: u32) -> (u8, u8, u8, u8, u8) {
let i2cclk = clock_hz;
let ratio = i2cclk / freq_hz - 4;
let (presc, scll, sclh, sdadel, scldel) = if freq_hz >= 100_000 {
// fast-mode or fast-mode plus
// here we pick SCLL + 1 = 2 * (SCLH + 1)
let presc = ratio / 387;
let sclh = ((ratio / (presc + 1)) - 3) / 3;
let scll = 2 * (sclh + 1) - 1;
let (sdadel, scldel) = if freq_hz > 400_000 {
// fast-mode plus
let sdadel = 0;
let scldel = i2cclk / 4_000_000 / (presc + 1) - 1;
(sdadel, scldel)
} else {
// fast-mode
let sdadel = i2cclk / 8_000_000 / (presc + 1);
let scldel = i2cclk / 2_000_000 / (presc + 1) - 1;
(sdadel, scldel)
};
(presc, scll, sclh, sdadel, scldel)
} else {
// standard-mode
// here we pick SCLL = SCLH
let presc = ratio / 514;
let sclh = ((ratio / (presc + 1)) - 2) / 2;
let scll = sclh;
let sdadel = i2cclk / 2_000_000 / (presc + 1);
let scldel = i2cclk / 800_000 / (presc + 1) - 1;
(presc, scll, sclh, sdadel, scldel)
};
assert!(presc < 16);
assert!(scldel < 16);
assert!(sdadel < 16);
let sclh = u8::try_from(sclh).unwrap();
let scll = u8::try_from(scll).unwrap();
(presc as u8, scll, sclh, sdadel as u8, scldel as u8)
}