1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
//! Public key accelerator
//!
//! Quickstart:
//!
//! * [ECDSA signing](Pka::ecdsa_sign)
//! * [ECDSA verify](Pka::ecdsa_verify)
//!
//! # Alternatives
//!
//! The [p256-cortex-m4] crate offers an assembly implementation of P256 that is
//! about 10x faster then the hardware.
//!
//! # ECDSA key pair generation
//!
//! Generate a private key for [`NIST_P256`](curve::NIST_P256):
//!
//! ```console
//! $ openssl ecparam -genkey -name prime256v1 -out key.pem
//! $ openssl ec -in key.pem -noout -text
//! read EC key
//! Private-Key: (256 bit)
//! priv:
//! 49:ac:87:27:ce:e8:74:84:fe:6d:fd:a5:10:23:8a:
//! d4:11:ac:e8:fe:59:3a:8c:b7:04:92:d6:59:db:81:
//! 80:2a
//! pub:
//! 04:fa:65:57:59:de:c3:90:28:96:46:0a:43:2b:ae:
//! 1d:00:91:26:e1:b4:88:78:9f:f4:ef:6b:9a:9b:de:
//! 1b:c3:63:8f:a0:2a:c4:c4:21:ca:88:4f:06:51:f4:
//! e9:85:e3:cf:d0:af:40:69:cc:87:f3:a8:8a:8e:95:
//! e7:55:6c:ed:97
//! ASN1 OID: prime256v1
//! NIST CURVE: P-256
//! ```
//!
//! The first `04` on the public key is encoding information, expressed in rust
//! that keypair becomes this:
//!
//! ```
//! use stm32wlxx_hal::pka::EcdsaPublicKey;
//!
//! const PRIV_KEY: [u32; 8] = [
//! 0x49ac8727, 0xcee87484, 0xfe6dfda5, 0x10238ad4, 0x11ace8fe, 0x593a8cb7, 0x0492d659,
//! 0xdb81802a,
//! ];
//!
//! const CURVE_PT_X: [u32; 8] = [
//! 0xfa655759, 0xdec39028, 0x96460a43, 0x2bae1d00, 0x9126e1b4, 0x88789ff4, 0xef6b9a9b,
//! 0xde1bc363,
//! ];
//! const CURVE_PT_Y: [u32; 8] = [
//! 0x8fa02ac4, 0xc421ca88, 0x4f0651f4, 0xe985e3cf, 0xd0af4069, 0xcc87f3a8, 0x8a8e95e7,
//! 0x556ced97,
//! ];
//! let pub_key: EcdsaPublicKey<8> = EcdsaPublicKey {
//! curve_pt_x: &CURVE_PT_X,
//! curve_pt_y: &CURVE_PT_Y,
//! };
//! ```
//!
//! Use this command to find the name of other curves:
//!
//! ```bash
//! openssl ecparam -list_curves
//! ```
//!
//! [p256-cortex-m4]: https://crates.io/crates/p256-cortex-m4
use crate::pac::{self, pka::cr::MODE_A};
use core::{
mem::size_of,
ptr::{read_volatile, write_volatile},
};
use nb;
/// Errors from an ECDSA signing operation.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum EcdsaSignError {
/// Address access is out of range (unmapped address).
Address,
/// An AHB access to the PKA RAM occurred while the PKA core was computing
/// and using its internal RAM.
/// (AHB PKA_RAM access are not allowed while PKA operation is in progress).
Ram,
/// Signature part R is equal to 0.
Rzero,
/// Signature part S is equal to 0.
Szero,
/// PKA mode does not match the expected mode.
Mode {
/// Actual mode bits
mode: u8,
},
/// Unknown result code.
Unknown {
/// Unknown result code bits.
bits: u32,
},
}
impl EcdsaSignError {
const fn from_raw(raw: u32) -> nb::Result<(), EcdsaSignError> {
match raw {
0 => Ok(()),
1 => Err(nb::Error::Other(EcdsaSignError::Rzero)),
2 => Err(nb::Error::Other(EcdsaSignError::Szero)),
_ => Err(nb::Error::Other(EcdsaSignError::Unknown { bits: raw })),
}
}
const fn mode(mode: u8) -> nb::Result<(), EcdsaSignError> {
Err(nb::Error::Other(EcdsaSignError::Mode { mode }))
}
}
/// Errors from an ECDSA verify operation.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum EcdsaVerifyError {
/// Address access is out of range (unmapped address).
Address,
/// An AHB access to the PKA RAM occurred while the PKA core was computing
/// and using its internal RAM.
/// (AHB PKA_RAM access is not allowed while a PKA operation is in progress).
Ram,
/// Invalid signature.
Invalid,
/// PKA mode does not match the expected mode.
Mode {
/// Actual mode bits
mode: u8,
},
}
impl EcdsaVerifyError {
const fn from_raw(raw: u32) -> nb::Result<(), EcdsaVerifyError> {
match raw {
0 => Ok(()),
_ => Err(nb::Error::Other(EcdsaVerifyError::Invalid)),
}
}
const fn mode(mode: u8) -> nb::Result<(), EcdsaVerifyError> {
Err(nb::Error::Other(EcdsaVerifyError::Mode { mode }))
}
}
/// PKA operation codes.
#[derive(Debug)]
#[repr(u8)]
#[allow(dead_code)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
enum PkaOpcode {
/// Montgomery parameter computation then modular exponentiation.
MontgomeryParameterExponentiation = 0b000000,
/// Montgomery parameter computation only.
MontgomeryParameter = 0b000001,
/// Modular exponentiation only (Montgomery parameter must be loaded first).
ModularExponentiation = 0b000010,
/// Montgomery parameter computation then ECC scalar multiplication.
MontgomeryParameterEcc = 0b100000,
/// ECC scalar multiplication only (Montgomery parameter must be loaded first).
EccScalar = 0b100010,
/// ECDSA signing.
EcdsaSign = 0b100100,
/// ECDSA verification.
EcdsaVerify = 0b100110,
/// Point on elliptic curve Fp check.
Point = 0b101000,
/// RSA CRT exponentiation.
RsaCrt = 0b000111,
/// Modular inversion.
ModularInversion = 0b001000,
/// Arithmetic addition.
ArithmeticAdd = 0b001001,
/// Arithmetic subtraction.
ArithmeticSub = 0b001010,
/// Arithmetic multiplication.
ArithmeticMul = 0b001011,
/// Arithmetic comparison.
ArithmeticCmp = 0b001100,
/// Modular reduction.
ModularRed = 0b001101,
/// Modular addition.
ModularAdd = 0b001110,
/// Modular subtraction.
ModularSub = 0b001111,
/// Montgomery multiplication.
MontgomeryMul = 0b010000,
}
impl From<PkaOpcode> for u8 {
fn from(x: PkaOpcode) -> Self {
x as u8
}
}
const BASE: usize = 0x5800_2000;
const RAM_BASE: usize = BASE + 0x400;
const RAM_NUM_DW: usize = 894;
// ECDSA sign input addresses
const ECDSA_SIGN_N_LEN: usize = BASE + 0x400;
const ECDSA_SIGN_P_LEN: usize = BASE + 0x404;
const ECDSA_SIGN_A_SIGN: usize = BASE + 0x408;
const ECDSA_SIGN_A: usize = BASE + 0x40C;
const ECDSA_SIGN_P: usize = BASE + 0x460;
const ECDSA_SIGN_K: usize = BASE + 0x508;
const ECDSA_SIGN_X: usize = BASE + 0x55C;
const ECDSA_SIGN_Y: usize = BASE + 0x5B0;
const ECDSA_SIGN_Z: usize = BASE + 0xDE8;
const ECDSA_SIGN_D: usize = BASE + 0xE3C;
const ECDSA_SIGN_N: usize = BASE + 0xE94;
// ECDSA sign output addresses
const ECDSA_SIGN_OUT_R: usize = BASE + 0x700;
const ECDSA_SIGN_OUT_S: usize = BASE + 0x754;
const ECDSA_SIGN_OUT_RESULT: usize = BASE + 0xEE8;
// ECDSA verify input addresses
const ECDSA_VERIFY_N_LEN: usize = BASE + 0x404;
const ECDSA_VERIFY_P_LEN: usize = BASE + 0x4B4;
const ECDSA_VERIFY_A_SIGN: usize = BASE + 0x45C;
const ECDSA_VERIFY_A: usize = BASE + 0x460;
const ECDSA_VERIFY_P: usize = BASE + 0x4B8;
const ECDSA_VERIFY_X: usize = BASE + 0x5E8;
const ECDSA_VERIFY_Y: usize = BASE + 0x63C;
const ECDSA_VERIFY_XQ: usize = BASE + 0xF40;
const ECDSA_VERIFY_YQ: usize = BASE + 0xF94;
const ECDSA_VERIFY_R: usize = BASE + 0x1098;
const ECDSA_VERIFY_S: usize = BASE + 0xA44;
const ECDSA_VERIFY_Z: usize = BASE + 0xFE8;
const ECDSA_VERIFY_N: usize = BASE + 0xD5C;
// ECDSA verify output addresses
const ECDSA_VERIFY_OUT: usize = BASE + 0x5B0;
/// PKA driver.
#[derive(Debug)]
pub struct Pka {
pka: pac::PKA,
}
impl Pka {
/// Create a new PKA driver from a PKA peripheral.
///
/// This will enable clocks and reset the PKA peripheral.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, pka::Pka};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let mut pka = Pka::new(dp.PKA, &mut dp.RCC);
/// ```
pub fn new(pka: pac::PKA, rcc: &mut pac::RCC) -> Pka {
Self::enable_clock(rcc);
unsafe { Self::pulse_reset(rcc) };
// When the PKA peripheral reset signal is released PKA RAM is cleared
// automatically, taking 894 clock cycles.
// During this time the setting of EN bit in PKA_CR is ignored
pka.cr.write(|w| w.en().set_bit());
while pka.cr.read().en().bit_is_clear() {
pka.cr.write(|w| w.en().set_bit());
}
Pka { pka }
}
/// Returns `true` if the PKA is enabled.
#[inline]
pub fn is_enabled(&mut self) -> bool {
self.pka.cr.read().en().is_enabled()
}
/// Free the PKA peripheral from the driver.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, pka::Pka};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let pka: pac::PKA = dp.PKA;
/// let pka: Pka = Pka::new(pka, &mut dp.RCC);
/// // ... use PKA
/// let pka: pac::PKA = pka.free();
/// ```
pub fn free(self) -> pac::PKA {
self.pka
}
/// Steal the PKA peripheral from whatever is currently using it.
///
/// This will **not** initialize the PKA (unlike [`new`]).
///
/// # Safety
///
/// This will create a new PKA peripheral, bypassing the singleton checks
/// that normally occur.
/// You are responsible for ensuring that the driver has exclusive access to
/// the PKA peripheral.
/// You are also responsible for ensuring the PKA has been setup correctly.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::pka::Pka;
///
/// // ... setup happens here
///
/// let pka = unsafe { Pka::steal() };
/// ```
///
/// [`new`]: Pka::new
pub unsafe fn steal() -> Pka {
Pka {
pka: pac::Peripherals::steal().PKA,
}
}
/// Disable the PKA clock.
///
/// # Safety
///
/// 1. You are responsible for ensuring the PKA bus is in a state where the
/// clock can be disabled without entering an error state.
/// 2. You cannot use the PKA bus while the clock is disabled.
/// 3. You are responsible for re-enabling the clock before resuming use
/// of the PKA bus.
/// 4. You are responsible for setting up anything that may have lost state
/// while the clock was disabled.
#[inline]
pub unsafe fn disable_clock(rcc: &mut pac::RCC) {
rcc.ahb3enr.modify(|_, w| w.pkaen().disabled());
}
/// Enable the PKA clock.
#[inline]
pub fn enable_clock(rcc: &mut pac::RCC) {
rcc.ahb3enr.modify(|_, w| w.pkaen().enabled());
rcc.ahb3enr.read(); // delay after an RCC peripheral clock enabling
}
/// Reset the PKA.
///
/// # Safety
///
/// 1. The PKA must not be in-use.
/// 2. You are responsible for setting up the PKA after a reset.
#[inline]
pub unsafe fn pulse_reset(rcc: &mut pac::RCC) {
rcc.ahb3rstr.modify(|_, w| w.pkarst().set_bit());
rcc.ahb3rstr.modify(|_, w| w.pkarst().clear_bit());
}
/// Unmask the PKA IRQ in the NVIC.
///
/// # Safety
///
/// This can break mask-based critical sections.
///
/// # Example
///
/// ```no_run
/// # #[cfg(not(feature = "stm32wl5x_cm0p"))]
/// unsafe { stm32wlxx_hal::pka::Pka::unmask_irq() };
/// ```
#[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
#[inline]
pub unsafe fn unmask_irq() {
pac::NVIC::unmask(pac::Interrupt::PKA)
}
#[inline]
fn clear_all_flags(&mut self) {
self.pka.clrfr.write(|w| {
w.addrerrfc().set_bit();
w.ramerrfc().set_bit();
w.procendfc().set_bit()
});
}
fn zero_ram(&mut self) {
(0..RAM_NUM_DW)
.for_each(|dw| unsafe { write_volatile((dw * 4 + RAM_BASE) as *mut u32, 0) });
}
unsafe fn write_ram(&mut self, offset: usize, buf: &[u32]) {
// asserts are for internal correctness, should not be accessible by users
debug_assert_eq!(offset % 4, 0);
debug_assert!(offset + core::mem::size_of_val(buf) < 0x5800_33FF);
buf.iter().rev().enumerate().for_each(|(idx, &dw)| {
write_volatile((offset + idx * size_of::<u32>()) as *mut u32, dw)
});
}
unsafe fn read_ram(&mut self, offset: usize, buf: &mut [u32]) {
// asserts are for internal correctness, should not be accessible by users
debug_assert_eq!(offset % 4, 0);
debug_assert!(offset + core::mem::size_of_val(buf) < 0x5800_33FF);
buf.iter_mut().rev().enumerate().for_each(|(idx, dw)| {
*dw = read_volatile((offset + idx * size_of::<u32>()) as *const u32);
});
}
#[inline]
fn start_process(&mut self, mode: MODE_A) {
self.pka.cr.write(|w| {
w.addrerrie().enabled();
w.ramerrie().enabled();
w.procendie().enabled();
w.mode().variant(mode);
w.start().set_bit();
w.en().set_bit()
});
}
/// ECDSA (Elliptic Curve Digital Signature Algorithm) signing.
///
/// This is the blocking ECDSA sign method, equivalent to calling
/// [`ecdsa_sign_start`](Self::ecdsa_sign_start) then polling
/// [`ecdsa_sign_result`](Self::ecdsa_sign_result).
///
/// ```no_run
/// # let mut pka = unsafe { stm32wlxx_hal::pka::Pka::steal() };
/// # let curve = stm32wlxx_hal::pka::curve::NIST_P256;
/// # let nonce: [u32; 8] = [0; 8];
/// # let priv_key: [u32; 8] = [0; 8];
/// # let hash: [u32; 8] = [0; 8];
/// # let mut r_sign: [u32; 8] = [0; 8];
/// # let mut s_sign: [u32; 8] = [0; 8];
/// // blocking
/// pka.ecdsa_sign(&curve, &nonce, &priv_key, &hash, &mut r_sign, &mut s_sign);
///
/// // non-blocking
/// pka.ecdsa_sign_start(&curve, &nonce, &priv_key, &hash)?;
/// nb::block!(pka.ecdsa_sign_result(&mut r_sign, &mut s_sign))?;
/// # Ok::<(), stm32wlxx_hal::pka::EcdsaSignError>(())
/// ```
///
/// # Computation Times
///
/// | Modulus Length (bits) | Cycles | Seconds at 48MHz |
/// |-----------------------|----------|------------------|
/// | 160 | 1760000 | 0.037 |
/// | 192 | 2664000 | 0.056 |
/// | 256 | 5249000 | 0.109 |
/// | 320 | 9016000 | 0.188 |
/// | 384 | 14596000 | 0.304 |
/// | 512 | 30618000 | 0.638 |
/// | 521 | 35540000 | 0.740 |
pub fn ecdsa_sign<const MODULUS_SIZE: usize, const PRIME_ORDER_SIZE: usize>(
&mut self,
curve: &EllipticCurve<MODULUS_SIZE, PRIME_ORDER_SIZE>,
nonce: &[u32; PRIME_ORDER_SIZE],
priv_key: &[u32; PRIME_ORDER_SIZE],
hash: &[u32; PRIME_ORDER_SIZE],
r_sign: &mut [u32; MODULUS_SIZE],
s_sign: &mut [u32; MODULUS_SIZE],
) -> Result<(), EcdsaSignError> {
self.ecdsa_sign_start(curve, nonce, priv_key, hash)?;
nb::block!(self.ecdsa_sign_result(r_sign, s_sign))
}
/// Start an ECDSA signing operation.
///
/// This will enable all the PKA IRQs.
///
/// Use the [`ecdsa_sign_result`](Self::ecdsa_sign_result) method to poll
/// for completion, or to get the result in an interrupt handler.
pub fn ecdsa_sign_start<const MODULUS_SIZE: usize, const PRIME_ORDER_SIZE: usize>(
&mut self,
curve: &EllipticCurve<MODULUS_SIZE, PRIME_ORDER_SIZE>,
nonce: &[u32; PRIME_ORDER_SIZE],
priv_key: &[u32; PRIME_ORDER_SIZE],
hash: &[u32; PRIME_ORDER_SIZE],
) -> Result<(), EcdsaSignError> {
self.zero_ram();
let n_length: u32 = (PRIME_ORDER_SIZE * size_of::<u32>() * 8) as u32;
let p_length: u32 = (MODULUS_SIZE * size_of::<u32>() * 8) as u32;
unsafe {
write_volatile(ECDSA_SIGN_N_LEN as *mut u32, n_length);
write_volatile(ECDSA_SIGN_P_LEN as *mut u32, p_length);
write_volatile(ECDSA_SIGN_A_SIGN as *mut u32, curve.coef_sign.into());
self.write_ram(ECDSA_SIGN_A, &curve.coef);
self.write_ram(ECDSA_SIGN_P, &curve.modulus);
self.write_ram(ECDSA_SIGN_K, nonce);
self.write_ram(ECDSA_SIGN_X, &curve.base_point_x);
self.write_ram(ECDSA_SIGN_Y, &curve.base_point_y);
self.write_ram(ECDSA_SIGN_Z, hash);
self.write_ram(ECDSA_SIGN_D, priv_key);
self.write_ram(ECDSA_SIGN_N, &curve.prime_order);
}
let sr = self.pka.sr.read();
if sr.addrerrf().bit_is_set() {
self.clear_all_flags();
Err(EcdsaSignError::Address)
} else if sr.ramerrf().bit_is_set() {
self.clear_all_flags();
Err(EcdsaSignError::Ram)
} else {
self.start_process(MODE_A::Ecdsasign);
Ok(())
}
}
/// Get the result of an ECDSA sign operation.
///
/// Use this after starting an ECDSA sign operation with
/// [`ecdsa_sign_start`](Self::ecdsa_sign_start).
pub fn ecdsa_sign_result<const MODULUS_SIZE: usize>(
&mut self,
r_sign: &mut [u32; MODULUS_SIZE],
s_sign: &mut [u32; MODULUS_SIZE],
) -> nb::Result<(), EcdsaSignError> {
let mode = self.pka.cr.read().mode();
if !mode.is_ecdsasign() {
return EcdsaSignError::mode(mode.bits());
}
let sr = self.pka.sr.read();
if sr.addrerrf().bit_is_set() {
self.clear_all_flags();
Err(nb::Error::Other(EcdsaSignError::Address))
} else if sr.ramerrf().bit_is_set() {
self.clear_all_flags();
Err(nb::Error::Other(EcdsaSignError::Ram))
} else if sr.procendf().is_in_progress() {
Err(nb::Error::WouldBlock)
} else {
self.clear_all_flags();
unsafe {
self.read_ram(ECDSA_SIGN_OUT_R, r_sign);
self.read_ram(ECDSA_SIGN_OUT_S, s_sign);
}
let result: u32 = unsafe { read_volatile(ECDSA_SIGN_OUT_RESULT as *const u32) };
if result != 0 {
// Reference manual table 163 "ECDSA sign - Outputs":
// If error output is different from zero the content of the PKA
// memory should be cleared to avoid leaking information about
// the private key.
self.zero_ram();
}
EcdsaSignError::from_raw(result)
}
}
/// ECDSA (Elliptic Curve Digital Signature Algorithm) verification.
///
/// This is the blocking ECDSA verify method, equivalent to calling
/// [`ecdsa_verify_start`](Self::ecdsa_verify_start) then polling
/// [`ecdsa_verify_result`](Self::ecdsa_verify_result).
///
/// ```no_run
/// # let mut pka = unsafe { stm32wlxx_hal::pka::Pka::steal() };
/// # let curve = stm32wlxx_hal::pka::curve::NIST_P256;
/// # let r_sign: [u32; 8] = [0; 8];
/// # let s_sign: [u32; 8] = [0; 8];
/// # let curve_pt_x: [u32; 8] = [0; 8];
/// # let curve_pt_y: [u32; 8] = [0; 8];
/// # let sig = stm32wlxx_hal::pka::EcdsaSignature { r_sign: &r_sign, s_sign: &s_sign };
/// # let pub_key = stm32wlxx_hal::pka::EcdsaPublicKey { curve_pt_x: &curve_pt_x, curve_pt_y: &curve_pt_y };
/// # let hash: [u32; 8] = [0; 8];
/// // blocking
/// pka.ecdsa_verify(&curve, &sig, &pub_key, &hash)?;
///
/// // non-blocking
/// pka.ecdsa_verify_start(&curve, &sig, &pub_key, &hash)?;
/// nb::block!(pka.ecdsa_verify_result())?;
/// # Ok::<(), stm32wlxx_hal::pka::EcdsaVerifyError>(())
/// ```
///
/// # Computation Times
///
/// | Modulus Length (bits) | Cycles | Seconds at 48MHz |
/// |-----------------------|----------|------------------|
/// | 160 | 3500000 | 0.073 |
/// | 192 | 5350000 | 0.112 |
/// | 256 | 10498000 | 0.219 |
/// | 320 | 18126000 | 0.378 |
/// | 384 | 29118000 | 0.607 |
/// | 512 | 61346000 | 1.278 |
/// | 521 | 71588000 | 1.491 |
pub fn ecdsa_verify<const MODULUS_SIZE: usize, const PRIME_ORDER_SIZE: usize>(
&mut self,
curve: &EllipticCurve<MODULUS_SIZE, PRIME_ORDER_SIZE>,
sig: &EcdsaSignature<MODULUS_SIZE>,
pub_key: &EcdsaPublicKey<MODULUS_SIZE>,
hash: &[u32; PRIME_ORDER_SIZE],
) -> Result<(), EcdsaVerifyError> {
self.ecdsa_verify_start(curve, sig, pub_key, hash)?;
nb::block!(self.ecdsa_verify_result())
}
/// Start an ECDSA verify operation.
///
/// This will enable all the PKA IRQs.
///
/// Use the [`ecdsa_verify_result`](Self::ecdsa_verify_result) method to
/// poll for completion, or to get the result in an interrupt handler.
pub fn ecdsa_verify_start<const MODULUS_SIZE: usize, const PRIME_ORDER_SIZE: usize>(
&mut self,
curve: &EllipticCurve<MODULUS_SIZE, PRIME_ORDER_SIZE>,
sig: &EcdsaSignature<MODULUS_SIZE>,
pub_key: &EcdsaPublicKey<MODULUS_SIZE>,
hash: &[u32; PRIME_ORDER_SIZE],
) -> Result<(), EcdsaVerifyError> {
self.zero_ram();
let n_length: u32 = (PRIME_ORDER_SIZE * size_of::<u32>() * 8) as u32;
let p_length: u32 = (MODULUS_SIZE * size_of::<u32>() * 8) as u32;
unsafe {
write_volatile(ECDSA_VERIFY_N_LEN as *mut u32, n_length);
write_volatile(ECDSA_VERIFY_P_LEN as *mut u32, p_length);
write_volatile(ECDSA_VERIFY_A_SIGN as *mut u32, curve.coef_sign.into());
self.write_ram(ECDSA_VERIFY_A, &curve.coef);
self.write_ram(ECDSA_VERIFY_P, &curve.modulus);
self.write_ram(ECDSA_VERIFY_X, &curve.base_point_x);
self.write_ram(ECDSA_VERIFY_Y, &curve.base_point_y);
self.write_ram(ECDSA_VERIFY_XQ, pub_key.curve_pt_x);
self.write_ram(ECDSA_VERIFY_YQ, pub_key.curve_pt_y);
self.write_ram(ECDSA_VERIFY_R, sig.r_sign);
self.write_ram(ECDSA_VERIFY_S, sig.s_sign);
self.write_ram(ECDSA_VERIFY_Z, hash);
self.write_ram(ECDSA_VERIFY_N, &curve.prime_order);
}
let sr = self.pka.sr.read();
if sr.addrerrf().bit_is_set() {
self.clear_all_flags();
Err(EcdsaVerifyError::Address)
} else if sr.ramerrf().bit_is_set() {
self.clear_all_flags();
Err(EcdsaVerifyError::Ram)
} else {
self.start_process(MODE_A::Ecdsaverif);
Ok(())
}
}
/// Get the result of an ECDSA verify operation.
///
/// Use this after starting an ECDSA verify operation with
/// [`ecdsa_verify_start`](Self::ecdsa_verify_start).
pub fn ecdsa_verify_result(&mut self) -> nb::Result<(), EcdsaVerifyError> {
let mode = self.pka.cr.read().mode();
if !mode.is_ecdsaverif() {
return EcdsaVerifyError::mode(mode.bits());
}
let sr = self.pka.sr.read();
if sr.addrerrf().bit_is_set() {
self.clear_all_flags();
Err(nb::Error::Other(EcdsaVerifyError::Address))
} else if sr.ramerrf().bit_is_set() {
self.clear_all_flags();
Err(nb::Error::Other(EcdsaVerifyError::Ram))
} else if sr.procendf().is_in_progress() {
Err(nb::Error::WouldBlock)
} else {
self.clear_all_flags();
let result: u32 = unsafe { read_volatile(ECDSA_VERIFY_OUT as *const u32) };
EcdsaVerifyError::from_raw(result)
}
}
}
/// Sign bit for ECDSA coefficient signing and verification.
#[repr(u32)]
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Sign {
/// Positive.
Pos = 0,
/// Negative.
Neg = 1,
}
impl From<Sign> for u32 {
fn from(s: Sign) -> Self {
s as u32
}
}
/// ECDSA signature.
#[derive(Debug, PartialEq, Eq)]
pub struct EcdsaSignature<'a, const MODULUS_SIZE: usize> {
/// Signature part r.
pub r_sign: &'a [u32; MODULUS_SIZE],
/// Signature part s.
pub s_sign: &'a [u32; MODULUS_SIZE],
}
#[cfg(feature = "defmt")]
impl<'a, const MODULUS_SIZE: usize> defmt::Format for EcdsaSignature<'a, MODULUS_SIZE> {
fn format(&self, fmt: defmt::Formatter) {
defmt::write!(
fmt,
"EcdsaSignature {{ r_sign: {}, s_sign: {} }}",
self.r_sign.as_ref(),
self.s_sign.as_ref()
)
}
}
/// ECDSA public key.
#[derive(Debug, PartialEq, Eq)]
pub struct EcdsaPublicKey<'a, const MODULUS_SIZE: usize> {
/// Public-key curve point xQ.
pub curve_pt_x: &'a [u32; MODULUS_SIZE],
/// Public-key curve point yQ.
pub curve_pt_y: &'a [u32; MODULUS_SIZE],
}
/// Elliptic curve.
///
/// Used to ECDSA signing and verification.
#[derive(Debug, PartialEq, Eq)]
pub struct EllipticCurve<const MODULUS_SIZE: usize, const PRIME_ORDER_SIZE: usize> {
/// Curve coefficient a sign.
///
/// **Note:** 0 for positive, 1 for negative.
pub coef_sign: Sign,
/// Curve coefficient |a|.
///
/// **Note:** Absolute value, |a| < p.
pub coef: [u32; MODULUS_SIZE],
/// Curve modulus value p.
///
/// **Note:** Odd integer prime, 0 < p < 2<sup>640</sup>
pub modulus: [u32; MODULUS_SIZE],
/// Curve base point G coordinate x.
///
/// **Note:** x < p
pub base_point_x: [u32; MODULUS_SIZE],
/// Curve base point G coordinate y.
///
/// **Note:** y < p
pub base_point_y: [u32; MODULUS_SIZE],
/// Curve prime order n.
///
/// **Note:** Integer prime.
pub prime_order: [u32; PRIME_ORDER_SIZE],
}
/// Pre-defined elliptic curves.
pub mod curve {
use super::{
EllipticCurve,
Sign::{Neg, Pos},
};
/// nist P-256
pub const NIST_P256: EllipticCurve<8, 8> = EllipticCurve {
coef_sign: Neg,
coef: [
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000003,
],
modulus: [
0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0xffffffff, 0xffffffff,
0xffffffff,
],
base_point_x: [
0x6b17d1f2, 0xe12c4247, 0xf8bce6e5, 0x63a440f2, 0x77037d81, 0x2deb33a0, 0xf4a13945,
0xd898c296,
],
base_point_y: [
0x4fe342e2, 0xfe1a7f9b, 0x8ee7eb4a, 0x7c0f9e16, 0x2bce3357, 0x6b315ece, 0xcbb64068,
0x37bf51f5,
],
prime_order: [
0xffffffff, 0x00000000, 0xffffffff, 0xffffffff, 0xbce6faad, 0xa7179e84, 0xf3b9cac2,
0xfc632551,
],
};
/// brainpool P224r1
pub const P224R1: EllipticCurve<7, 7> = EllipticCurve {
coef_sign: Pos,
coef: [
0x68A5E62C, 0xA9CE6C1C, 0x299803A6, 0xC1530B51, 0x4E182AD8, 0xB0042A59, 0xCAD29F43,
],
modulus: [
0xD7C134AA, 0x26436686, 0x2A183025, 0x75D1D787, 0xB09F0757, 0x97DA89F5, 0x7EC8C0FF,
],
base_point_x: [
0x0D9029AD, 0x2C7E5CF4, 0x340823B2, 0xA87DC68C, 0x9E4CE317, 0x4C1E6EFD, 0xEE12C07D,
],
base_point_y: [
0x58AA56F7, 0x72C0726F, 0x24C6B89E, 0x4ECDAC24, 0x354B9E99, 0xCAA3F6D3, 0x761402CD,
],
prime_order: [
0xD7C134AA, 0x26436686, 0x2A183025, 0x75D0FB98, 0xD116BC4B, 0x6DDEBCA3, 0xA5A7939F,
],
};
#[allow(missing_docs)]
pub const P224R1_B: [u32; 7] = [
0x2580F63C, 0xCFE44138, 0x870713B1, 0xA92369E3, 0x3E2135D2, 0x66DBB372, 0x386C400B,
];
/// nist P-192
#[rustfmt::skip]
pub const NIST_P192: EllipticCurve<6, 6> = EllipticCurve {
coef_sign: Neg,
coef: [0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000003],
modulus: [0xFFFFFFFF; 6],
base_point_x: [0x188DA80E, 0xB03090F6, 0x7CBF20EB, 0x43A18800, 0xF4FF0AFD, 0x82FF1012],
base_point_y: [0x07192B95, 0xFFC8DA78, 0x631011ED, 0x6B24CDD5, 0x73F977A1, 0x1E794811],
prime_order: [0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x99DEF836, 0x146BC9B1, 0xB4D22831],
};
#[allow(missing_docs)]
pub const NIST_P192_B: [u32; 6] = [
0x64210519, 0xE59C80E7, 0x0FA7E9AB, 0x72243049, 0xFEB8DEEC, 0xC146B9B1,
];
}