1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
//! Reset and clocking control
//!
//! Unlike other HALs clocks do not get frozen.
//! A lot of applications for this chip will require low-power,
//! and there are many scenarios where you will want to adjust the clocks.
//!
//! Quickstart: [`set_sysclk_msi_max`]
use crate::{pac, Ratio};
use cortex_m::{interrupt::CriticalSection, peripheral::syst::SystClkSource};
use pac::flash::acr::LATENCY_A;
pub use pac::rcc::bdcr::LSCOSEL_A as LscoSel;
pub use pac::rcc::csr::LSIPRE_A as LsiPre;
fn hclk3_prescaler_div(rcc: &pac::RCC) -> u16 {
pre_div(rcc.extcfgr.read().shdhpre().bits())
}
fn set_flash_latency(flash: &pac::FLASH, rcc: &pac::RCC, target_sysclk_hz: u32, vos: Vos) {
let div: u32 = u32::from(hclk3_prescaler_div(rcc));
let flash_clk_src_freq: u32 = target_sysclk_hz / div;
let ws: LATENCY_A = match vos {
Vos::V1_2 => match flash_clk_src_freq {
0..=18_000_000 => LATENCY_A::Ws0,
18_000_001..=36_000_000 => LATENCY_A::Ws1,
_ => LATENCY_A::Ws2,
},
Vos::V1_0 => match flash_clk_src_freq {
0..=6_000_000 => LATENCY_A::Ws0,
6_000_001..=12_000_000 => LATENCY_A::Ws1,
_ => LATENCY_A::Ws2,
},
};
flash.acr.modify(|_, w| w.latency().variant(ws));
while flash.acr.read().latency().variant() != Some(ws) {}
}
/// MSI clock ranges.
// developers: this exists because the MSI range appears in two different registers.
#[repr(u8)]
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Default)]
pub enum MsiRange {
/// Range 0 around 100 kHz.
Range100k = 0b0000,
/// Range 1 around 200 kHz.
Range200k = 0b0001,
/// Range 2 around 400 kHz.
Range400k = 0b0010,
/// Range 3 around 800 kHz.
Range800k = 0b0011,
/// Range 4 around 1 MHz.
Range1M = 0b0100,
/// Range 5 around 2 MHz.
Range2M = 0b0101,
/// Range 6 around 4 MHz.
#[default]
Range4M = 0b0110,
/// Range 7 around 8 MHz.
Range8M = 0b0111,
/// Range 8 around 16 MHz.
Range16M = 0b1000,
/// Range 9 around 24 MHz.
Range24M = 0b1001,
/// Range 10 around 32 MHz.
Range32M = 0b1010,
/// Range 11 around 48 MHz.
Range48M = 0b1011,
}
impl MsiRange {
/// Get the frequency for an MSI range in hertz.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::rcc::MsiRange;
///
/// assert_eq!(MsiRange::Range100k.to_hz(), 100_000);
/// assert_eq!(MsiRange::Range200k.to_hz(), 200_000);
/// assert_eq!(MsiRange::Range400k.to_hz(), 400_000);
/// assert_eq!(MsiRange::Range800k.to_hz(), 800_000);
/// assert_eq!(MsiRange::Range1M.to_hz(), 1_000_000);
/// assert_eq!(MsiRange::Range2M.to_hz(), 2_000_000);
/// assert_eq!(MsiRange::Range4M.to_hz(), 4_000_000);
/// assert_eq!(MsiRange::Range8M.to_hz(), 8_000_000);
/// assert_eq!(MsiRange::Range16M.to_hz(), 16_000_000);
/// assert_eq!(MsiRange::Range24M.to_hz(), 24_000_000);
/// assert_eq!(MsiRange::Range32M.to_hz(), 32_000_000);
/// assert_eq!(MsiRange::Range48M.to_hz(), 48_000_000);
/// ```
pub const fn to_hz(&self) -> u32 {
match self {
MsiRange::Range100k => 100_000,
MsiRange::Range200k => 200_000,
MsiRange::Range400k => 400_000,
MsiRange::Range800k => 800_000,
MsiRange::Range1M => 1_000_000,
MsiRange::Range2M => 2_000_000,
MsiRange::Range4M => 4_000_000,
MsiRange::Range8M => 8_000_000,
MsiRange::Range16M => 16_000_000,
MsiRange::Range24M => 24_000_000,
MsiRange::Range32M => 32_000_000,
MsiRange::Range48M => 48_000_000,
}
}
/// Get the current MSI clock range from hardware registers.
///
/// The unwraps in this function are desired because the other values are
/// impossible to set in hardware.
fn from_rcc(rcc: &pac::RCC) -> MsiRange {
use pac::rcc::cr::MSIRGSEL_A::{Cr, Csr};
let cr = rcc.cr.read();
match cr.msirgsel().variant() {
Csr => unwrap!(rcc.csr.read().msisrange().bits().try_into()),
Cr => unwrap!(cr.msirange().bits().try_into()),
}
}
fn vos(&self) -> Vos {
if self > &MsiRange::Range16M {
Vos::V1_2
} else {
Vos::V1_0
}
}
}
impl From<MsiRange> for u8 {
fn from(x: MsiRange) -> Self {
x as u8
}
}
impl TryFrom<u8> for MsiRange {
type Error = u8;
fn try_from(x: u8) -> Result<Self, Self::Error> {
match x {
0b0000 => Ok(MsiRange::Range100k),
0b0001 => Ok(MsiRange::Range200k),
0b0010 => Ok(MsiRange::Range400k),
0b0011 => Ok(MsiRange::Range800k),
0b0100 => Ok(MsiRange::Range1M),
0b0101 => Ok(MsiRange::Range2M),
0b0110 => Ok(MsiRange::Range4M),
0b0111 => Ok(MsiRange::Range8M),
0b1000 => Ok(MsiRange::Range16M),
0b1001 => Ok(MsiRange::Range24M),
0b1010 => Ok(MsiRange::Range32M),
0b1011 => Ok(MsiRange::Range48M),
_ => Err(x),
}
}
}
impl From<MsiRange> for pac::rcc::cr::MSIRANGE_A {
fn from(mr: MsiRange) -> Self {
match mr {
MsiRange::Range100k => pac::rcc::cr::MSIRANGE_A::Range100k,
MsiRange::Range200k => pac::rcc::cr::MSIRANGE_A::Range200k,
MsiRange::Range400k => pac::rcc::cr::MSIRANGE_A::Range400k,
MsiRange::Range800k => pac::rcc::cr::MSIRANGE_A::Range800k,
MsiRange::Range1M => pac::rcc::cr::MSIRANGE_A::Range1m,
MsiRange::Range2M => pac::rcc::cr::MSIRANGE_A::Range2m,
MsiRange::Range4M => pac::rcc::cr::MSIRANGE_A::Range4m,
MsiRange::Range8M => pac::rcc::cr::MSIRANGE_A::Range8m,
MsiRange::Range16M => pac::rcc::cr::MSIRANGE_A::Range16m,
MsiRange::Range24M => pac::rcc::cr::MSIRANGE_A::Range24m,
MsiRange::Range32M => pac::rcc::cr::MSIRANGE_A::Range32m,
MsiRange::Range48M => pac::rcc::cr::MSIRANGE_A::Range48m,
}
}
}
/// Voltage scaling
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum Vos {
/// High-performance range (range 1)
///
/// * The main regulator provides a typical output voltage at 1.2 V.
/// * The system clock frequency can be up to 64 MHz.
/// * The Flash memory access time for read access is minimum.
/// * Write and erase operations are possible.
V1_2 = 0b01,
/// Low-power range (range 2)
///
/// * The main regulator provides a typical output voltage at 1.0 V.
/// * The system clock frequency can be up to 16 MHz.
/// * The Flash memory access time for a read access is increased as
/// compared to range 1.
/// * Write and erase operations are possible.
V1_0 = 0b10,
}
/// Prescaler divisor.
/// Works for SHDHPRE, C2HPRE, HPRE.
const fn pre_div(pre: u8) -> u16 {
match pre {
0b0001 => 3,
0b0010 => 5,
0b0101 => 6,
0b0110 => 10,
0b0111 => 32,
0b1000 => 2,
0b1001 => 4,
0b1010 => 8,
0b1011 => 16,
0b1100 => 64,
0b1101 => 128,
0b1110 => 256,
0b1111 => 512,
_ => 1,
}
}
/// APB Prescaler divisor.
/// Works for PPRE1, PPRE2.
const fn ppre_div(pre: u8) -> u8 {
match pre {
0b100 => 2,
0b101 => 4,
0b110 => 8,
0b111 => 16,
_ => 1,
}
}
/// Set the sysclk to use the HSE 32MHz clock.
///
/// The VOS argument selects the voltage range which determines the clock
/// prescaler:
/// * 1.2V: 32MHz (div 1)
/// * 1.0V: 16MHz (div 2)
///
/// # Safety
///
/// 1. Peripherals must not be in-use before calling this function.
/// 2. Peripherals may need their prescalers adjusted for the new sysclk frequency.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// pac,
/// rcc::{set_sysclk_hse, Vos},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// cortex_m::interrupt::free(|cs| unsafe {
/// set_sysclk_hse(&mut dp.FLASH, &mut dp.PWR, &mut dp.RCC, Vos::V1_2, cs)
/// });
/// ```
#[allow(unused_variables)]
pub unsafe fn set_sysclk_hse(
flash: &mut pac::FLASH,
pwr: &mut pac::PWR,
rcc: &mut pac::RCC,
vos: Vos,
cs: &CriticalSection,
) {
use pac::rcc::cr::HSEPRE_A;
let (pre, target_sysclk_hz): (HSEPRE_A, u32) = match vos {
Vos::V1_2 => (HSEPRE_A::Div1, 32_000_000),
Vos::V1_0 => (HSEPRE_A::Div2, 16_000_000),
};
// increase VOS range
if vos == Vos::V1_2 {
pwr.cr1.modify(|_, w| w.vos().v1_2());
while pwr.sr2.read().vosf().is_change() {}
}
// setting HSEBYPWR is only valid when HSE is off
// assume the user knows what they are doing in this scenario
if rcc.cr.read().hseon().is_disabled() {
rcc.cr.modify(|_, w| {
w.hseon()
.enabled()
.hsepre()
.variant(pre)
.hsebyppwr()
.vddtcxo()
});
} else {
rcc.cr
.modify(|_, w| w.hseon().enabled().hsepre().variant(pre));
}
while rcc.cr.read().hserdy().is_not_ready() {}
let current_sysclk_hz: u32 = sysclk_hz(rcc);
if target_sysclk_hz > current_sysclk_hz {
// freq increase, set new flash latency first
set_flash_latency(flash, rcc, target_sysclk_hz, vos);
rcc.cfgr.modify(|_, w| w.sw().hse32());
while !rcc.cfgr.read().sws().is_hse32() {}
} else {
// freq decrease, set new flash latency last
rcc.cfgr.modify(|_, w| w.sw().hse32());
while !rcc.cfgr.read().sws().is_hse32() {}
set_flash_latency(flash, rcc, target_sysclk_hz, vos);
}
// decrease VOS range
if vos == Vos::V1_0 {
pwr.cr1.modify(|_, w| w.vos().v1_0());
}
}
/// Set the sysclk to use the HSI 16MHz clock.
///
/// # Safety
///
/// 1. Peripherals must not be in-use before calling this function.
/// 2. Peripherals may need their prescalers adjusted for the new sysclk frequency.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::set_sysclk_hsi};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// cortex_m::interrupt::free(|cs| unsafe {
/// set_sysclk_hsi(&mut dp.FLASH, &mut dp.PWR, &mut dp.RCC, cs)
/// });
/// ```
#[allow(unused_variables)]
pub unsafe fn set_sysclk_hsi(
flash: &mut pac::FLASH,
pwr: &mut pac::PWR,
rcc: &mut pac::RCC,
cs: &CriticalSection,
) {
rcc.cr.modify(|_, w| w.hsion().enabled());
while rcc.cr.read().hsirdy().is_not_ready() {}
let current_sysclk_hz: u32 = sysclk_hz(rcc);
const TARGET_SYSCLK_HZ: u32 = 16_000_000;
if TARGET_SYSCLK_HZ > current_sysclk_hz {
// freq increase, set new flash latency first
set_flash_latency(flash, rcc, TARGET_SYSCLK_HZ, Vos::V1_0);
rcc.cfgr.modify(|_, w| w.sw().hsi16());
while !rcc.cfgr.read().sws().is_hsi16() {}
} else {
// freq decrease, set new flash latency last
rcc.cfgr.modify(|_, w| w.sw().hsi16());
while !rcc.cfgr.read().sws().is_hsi16() {}
set_flash_latency(flash, rcc, TARGET_SYSCLK_HZ, Vos::V1_0);
}
// decrease VOS range
pwr.cr1.modify(|_, w| w.vos().v1_0());
}
/// Set the sysclk from an MSI range.
///
/// # Safety
///
/// 1. Peripherals must not be in-use before calling this function.
/// 2. Peripherals may need their prescalers adjusted for the new sysclk frequency.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// pac,
/// rcc::{set_sysclk_msi, MsiRange},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// cortex_m::interrupt::free(|cs| unsafe {
/// set_sysclk_msi(
/// &mut dp.FLASH,
/// &mut dp.PWR,
/// &mut dp.RCC,
/// MsiRange::Range48M,
/// cs,
/// )
/// });
/// ```
pub unsafe fn set_sysclk_msi(
flash: &mut pac::FLASH,
pwr: &mut pac::PWR,
rcc: &mut pac::RCC,
range: MsiRange,
cs: &CriticalSection,
) {
// startup the MSI clock
rcc.cr.modify(|_, w| w.msion().enabled());
let vos: Vos = range.vos();
// increase VOS range
if vos == Vos::V1_2 {
pwr.cr1.modify(|_, w| w.vos().v1_2());
while pwr.sr2.read().vosf().is_change() {}
}
let cfgr = rcc.cfgr.read();
// ES0500 Rev 3 erratum handling:
//
// A voltage drop to 1.08 V may occur on the 1.2 V regulated supply when the
// MSI frequency is changed as follows:
// * from MSI at 400 kHz to MSI at 24 MHz and above
// * from MSI at 1 MHZ to MSI at 48 MHz
// As a result, the voltage drop may cause CPU HardFault.
// To ensure there is no impact on the 1.2 V supply, introduce an
// intermediate MSI frequency
//
// Open question:
// Does this apply when the CPU is clocked by the PLL via MSI?
if cfgr.sws().is_msi() {
let current_range: MsiRange = MsiRange::from_rcc(rcc);
if ((current_range == MsiRange::Range400k) && (range >= MsiRange::Range24M))
|| ((current_range == MsiRange::Range1M) && (range == MsiRange::Range48M))
{
set_sysclk_msi_inner(flash, rcc, MsiRange::Range16M, vos, cs)
}
}
set_sysclk_msi_inner(flash, rcc, range, vos, cs);
// decrease VOS range
if vos == Vos::V1_0 {
pwr.cr1.modify(|_, w| w.vos().v1_0());
}
}
unsafe fn set_sysclk_msi_inner(
flash: &mut pac::FLASH,
rcc: &mut pac::RCC,
range: MsiRange,
vos: Vos,
_cs: &CriticalSection,
) {
// MSI was enabled by the caller, wait for it to be ready
// MSIRGSEL can only be set when MSI is ready (or off)
while rcc.cr.read().msirdy().is_not_ready() {}
let current_sysclk_hz: u32 = sysclk_hz(rcc);
let target_sysclk_hz: u32 = range.to_hz();
if target_sysclk_hz > current_sysclk_hz {
// freq increase, set new flash latency first
set_flash_latency(flash, rcc, target_sysclk_hz, vos);
rcc.cr
.modify(|_, w| w.msirgsel().cr().msirange().variant(range.into()));
rcc.icscr.modify(|_, w| w.msitrim().bits(0));
// switch to MSI clock source
rcc.cfgr.modify(|_, w| w.sw().msi());
while !rcc.cfgr.read().sws().is_msi() {}
} else {
// freq decrease, set new flash latency last
// defmt::info!("rcc.cr write: {:#X}", rcc.cr.read().bits());
// cortex_m::asm::delay(range.to_hz());
rcc.cr.modify(|_, w| w.msirange().variant(range.into()));
// defmt::info!("rcc.cr write: {:#X}", rcc.cr.read().bits());
// cortex_m::asm::delay(range.to_hz());
rcc.cr.modify(|_, w| w.msirgsel().cr());
// defmt::info!("msitrim");
// cortex_m::asm::delay(range.to_hz());
rcc.icscr.modify(|_, w| w.msitrim().bits(0));
// switch to MSI clock source
rcc.cfgr.modify(|_, w| w.sw().msi());
while !rcc.cfgr.read().sws().is_msi() {}
set_flash_latency(flash, rcc, target_sysclk_hz, vos);
}
}
/// Set the sysclk to the MSI source at 48MHz.
///
/// This is a convenience function that wraps [`set_sysclk_msi`]
/// to set the system clock to the highest frequency.
///
/// # Safety
///
/// 1. Peripherals must not be in-use before calling this function.
/// 2. Peripherals may need their prescalers adjusted for the new sysclk frequency.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::set_sysclk_msi_max};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// cortex_m::interrupt::free(|cs| unsafe {
/// set_sysclk_msi_max(&mut dp.FLASH, &mut dp.PWR, &mut dp.RCC, cs)
/// });
/// ```
pub unsafe fn set_sysclk_msi_max(
flash: &mut pac::FLASH,
pwr: &mut pac::PWR,
rcc: &mut pac::RCC,
cs: &CriticalSection,
) {
set_sysclk_msi(flash, pwr, rcc, MsiRange::Range48M, cs)
}
#[cfg_attr(feature = "stm32wl5x_cm0p", allow(dead_code))]
fn pllclk(rcc: &pac::RCC, pllcfgr: &pac::rcc::pllcfgr::R) -> Ratio<u32> {
use pac::rcc::{
cr::HSEPRE_A::{Div1, Div2},
pllcfgr::PLLSRC_A as PLLSRC,
};
let src_freq: u32 = match pllcfgr.pllsrc().variant() {
PLLSRC::NoClock => 0,
PLLSRC::Msi => MsiRange::from_rcc(rcc).to_hz(),
PLLSRC::Hsi16 => 16_000_000,
PLLSRC::Hse32 => match rcc.cr.read().hsepre().variant() {
Div1 => 32_000_000,
Div2 => 16_000_000,
},
};
let pll_m: u32 = pllcfgr.pllm().bits().wrapping_add(1).into();
let pll_n: u32 = pllcfgr.plln().bits().into();
Ratio::new_raw(pll_n * src_freq, pll_m)
}
#[cfg_attr(feature = "stm32wl5x_cm0p", allow(dead_code))]
pub(crate) fn pllpclk(rcc: &pac::RCC, pllcfgr: &pac::rcc::pllcfgr::R) -> Ratio<u32> {
let src: Ratio<u32> = pllclk(rcc, pllcfgr);
let pll_p: u32 = pllcfgr.pllp().bits().wrapping_add(1).into();
src / pll_p
}
pub(crate) fn sysclk(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
use pac::rcc::{
cfgr::SWS_A::{Hse32, Hsi16, Msi, Pllr},
cr::HSEPRE_A::{Div1, Div2},
pllcfgr::PLLSRC_A as PLLSRC,
};
match cfgr.sws().variant() {
Msi => Ratio::new_raw(MsiRange::from_rcc(rcc).to_hz(), 1),
Hsi16 => Ratio::new_raw(16_000_000, 1),
Hse32 => match rcc.cr.read().hsepre().variant() {
Div1 => Ratio::new_raw(32_000_000, 1),
Div2 => Ratio::new_raw(16_000_000, 1),
},
Pllr => {
let pllcfgr = rcc.pllcfgr.read();
let src_freq: u32 = match pllcfgr.pllsrc().variant() {
// cannot be executing this code if there is no clock
PLLSRC::NoClock => unreachable!(),
PLLSRC::Msi => MsiRange::from_rcc(rcc).to_hz(),
PLLSRC::Hsi16 => 16_000_000,
PLLSRC::Hse32 => match rcc.cr.read().hsepre().variant() {
Div1 => 32_000_000,
Div2 => 16_000_000,
},
};
let pll_m: u32 = pllcfgr.pllm().bits().wrapping_add(1).into();
let pll_n: u32 = pllcfgr.plln().bits().into();
let pll_r: u32 = pllcfgr.pllr().bits().wrapping_add(1).into();
// proof that this will not panic:
//
// pll_n is max 127, src_freq is max 32_000_000
// max numer is 4_064_000_000 (less than u32::MAX)
//
// pll_m is max 8, pll_r is max 8
// max denom is 64 (less than u32::MAX)
//
// pll_m and pll_r are both min 1 (denom cannot be zero)
Ratio::new_raw(pll_n * src_freq, pll_m * pll_r)
}
}
}
/// Calculate the current system clock frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::sysclk_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization sysclk will be 4MHz
/// assert_eq!(sysclk_hz(&dp.RCC), 4_000_000);
/// ```
pub fn sysclk_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
sysclk(rcc, &cfgr).to_integer()
}
fn hclk1(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
let div: u32 = pre_div(cfgr.hpre().bits()).into();
sysclk(rcc, cfgr) / div
}
/// Calculate the current hclk1 frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::hclk1_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization hclk1 will be 4MHz
/// assert_eq!(hclk1_hz(&dp.RCC), 4_000_000);
/// ```
pub fn hclk1_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
hclk1(rcc, &cfgr).to_integer()
}
#[cfg(any(feature = "stm32wl5x_cm4", feature = "stm32wl5x_cm0p"))]
fn hclk2(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
let div: u32 = pre_div(rcc.extcfgr.read().c2hpre().bits()).into();
sysclk(rcc, cfgr) / div
}
/// Calculate the current hclk2 frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::hclk2_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization hclk2 will be 4MHz
/// assert_eq!(hclk2_hz(&dp.RCC), 4_000_000);
/// ```
#[cfg(any(feature = "stm32wl5x_cm4", feature = "stm32wl5x_cm0p"))]
pub fn hclk2_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
hclk2(rcc, &cfgr).to_integer()
}
pub(crate) fn hclk3(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
let div: u32 = pre_div(rcc.extcfgr.read().shdhpre().bits()).into();
sysclk(rcc, cfgr) / div
}
/// Calculate the current hclk3 frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::hclk3_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization hclk3 will be 4MHz
/// assert_eq!(hclk3_hz(&dp.RCC), 4_000_000);
/// ```
pub fn hclk3_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
hclk3(rcc, &cfgr).to_integer()
}
fn cpu1_systick(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R, src: SystClkSource) -> Ratio<u32> {
let hclk1: Ratio<u32> = hclk1(rcc, cfgr);
match src {
SystClkSource::Core => hclk1,
SystClkSource::External => hclk1 / 8,
}
}
pub(crate) fn pclk1(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
let div: u32 = ppre_div(cfgr.ppre1().bits()).into();
hclk1(rcc, cfgr) / div
}
pub(crate) fn apb1timx(rcc: &pac::RCC) -> Ratio<u32> {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
// * If the APB prescaler (PPREx) selects the PCLKx clock to be HCLK1 not divided,
// the timer clock frequencies are set to the HCLK1 frequency (timer clock = HCLK1).
// * If the APB prescaler (PPREx) selects the PCLKx clock to be HCLK1 divided by n,
// the timer clock frequencies are set to HCLK1 divided by (n / 2) (timer clock = 2 × PCLKx).
let div: u32 = match cfgr.ppre1().bits() {
0b101 => 2, // 4 / 2
0b110 => 4, // 8 / 2
0b111 => 8, // 16 / 2
_ => 1, // 2 / 2 and all others
};
hclk1(rcc, &cfgr) / div
}
/// Calculate the current PCLK1 frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::pclk1_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization pclk1 will be 4MHz
/// assert_eq!(pclk1_hz(&dp.RCC), 4_000_000);
/// ```
pub fn pclk1_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
pclk1(rcc, &cfgr).to_integer()
}
pub(crate) fn pclk2(rcc: &pac::RCC, cfgr: &pac::rcc::cfgr::R) -> Ratio<u32> {
let div: u32 = ppre_div(cfgr.ppre2().bits()).into();
hclk1(rcc, cfgr) / div
}
/// Calculate the current PCLK2 frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::pclk2_hz};
///
/// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // without any initialization pclk2 will be 4MHz
/// assert_eq!(pclk2_hz(&dp.RCC), 4_000_000);
/// ```
pub fn pclk2_hz(rcc: &pac::RCC) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
pclk2(rcc, &cfgr).to_integer()
}
/// Calculate the current CPU1 systick frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// Created a systick based delay structure.
///
/// ```no_run
/// use stm32wlxx_hal::{
/// cortex_m::{delay::Delay, peripheral::syst::SystClkSource},
/// pac,
/// rcc::cpu1_systick_hz,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
///
/// // Delay constructor will set the clock source to core
/// // note: this code is only valid if running on CPU1
/// // cpu_systick_hz is better for this use-case
/// let mut delay: Delay = Delay::new(cp.SYST, cpu1_systick_hz(&dp.RCC, SystClkSource::Core));
/// delay.delay_ms(100);
/// ```
pub fn cpu1_systick_hz(rcc: &pac::RCC, src: SystClkSource) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
cpu1_systick(rcc, &cfgr, src).to_integer()
}
#[cfg(any(feature = "stm32wl5x_cm4", feature = "stm32wl5x_cm0p"))]
fn cpu2_systick(rcc: &pac::RCC, cfgr: pac::rcc::cfgr::R, src: SystClkSource) -> Ratio<u32> {
let hclk2: Ratio<u32> = hclk2(rcc, &cfgr);
match src {
SystClkSource::Core => hclk2,
SystClkSource::External => hclk2 / 8,
}
}
/// Calculate the current CPU2 systick frequency in hertz
///
/// Fractional frequencies will be rounded down.
///
/// # Example
///
/// Created a systick based delay structure.
///
/// ```no_run
/// use stm32wlxx_hal::{
/// cortex_m::{delay::Delay, peripheral::syst::SystClkSource},
/// pac,
/// rcc::cpu2_systick_hz,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
///
/// // Delay constructor will set the clock source to core
/// // note: this code is only valid if running on CPU2
/// // cpu_systick_hz is better for this use-case
/// let mut delay: Delay = Delay::new(cp.SYST, cpu2_systick_hz(&dp.RCC, SystClkSource::Core));
/// delay.delay_ms(100);
/// ```
#[cfg(any(feature = "stm32wl5x_cm4", feature = "stm32wl5x_cm0p"))]
pub fn cpu2_systick_hz(rcc: &pac::RCC, src: SystClkSource) -> u32 {
let cfgr: pac::rcc::cfgr::R = rcc.cfgr.read();
cpu2_systick(rcc, cfgr, src).to_integer()
}
/// Calculate the current CPU systick frequency in hertz.
///
/// This will automatically select the correct CPU based on the feature
/// flag passed to the HAL.
///
/// # Example
///
/// Created a systick based delay structure.
///
/// ```no_run
/// use stm32wlxx_hal::{
/// cortex_m::{delay::Delay, peripheral::syst::SystClkSource},
/// pac,
/// rcc::cpu_systick_hz,
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let cp: pac::CorePeripherals = pac::CorePeripherals::take().unwrap();
///
/// // Delay constructor will set the clock source to core
/// let mut delay: Delay = Delay::new(cp.SYST, cpu_systick_hz(&dp.RCC, SystClkSource::Core));
/// delay.delay_ms(100);
/// ```
pub fn cpu_systick_hz(rcc: &pac::RCC, src: SystClkSource) -> u32 {
#[cfg(feature = "stm32wl5x_cm0p")]
{
cpu2_systick_hz(rcc, src)
}
#[cfg(not(feature = "stm32wl5x_cm0p"))]
{
cpu1_systick_hz(rcc, src)
}
}
/// Calculate the LSI clock frequency in hertz.
///
/// The LSI is either 32 kHz without the LSI prescaler or 250 Hz with the LSI
/// prescaler.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::lsi_hz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // LSI is not divided at power on
/// assert_eq!(lsi_hz(&dp.RCC), 32_000);
/// ```
#[inline]
pub fn lsi_hz(rcc: &pac::RCC) -> u16 {
use pac::rcc::csr::LSIPRE_A::{Div1, Div128};
const LSI_BASE_HZ: u16 = 32_000;
const LSI_DIV_HZ: u16 = 32_000 / 128;
// safety: volatile read with no side effects to an always-on domain
match rcc.csr.read().lsipre().variant() {
Div1 => LSI_BASE_HZ,
Div128 => LSI_DIV_HZ,
}
}
/// Setup the LSI clock and wait for completion.
///
/// This will temporarily disable the LSI clock if the prescaler needs to be
/// changed.
///
/// # Safety
///
/// 1. Ensure there are no peripherals using the LSI clock source before calling
/// this function.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// pac,
/// rcc::{setup_lsi, LsiPre},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// unsafe { setup_lsi(&mut dp.RCC, LsiPre::Div1) };
/// ```
#[inline]
pub unsafe fn setup_lsi(rcc: &mut pac::RCC, pre: LsiPre) {
rcc.csr.modify(|r, w| {
// LSI pre-scaler is applied after an on-off cycle
// leave LSI on if it is already on with the correct prescaler
let lsion: bool = r.lsion().is_on() && r.lsipre().variant() == pre;
w.lsipre().variant(pre).lsion().bit(lsion)
});
enable_lsi(rcc)
}
/// Enable the LSI clock with the currently configured pre-scaler and wait
/// for completion.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::enable_lsi};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// enable_lsi(&mut dp.RCC);
/// ```
#[inline]
pub fn enable_lsi(rcc: &mut pac::RCC) {
rcc.csr.modify(|_, w| w.lsion().on());
while rcc.csr.read().lsirdy().is_not_ready() {}
}
/// Reset the backup domain.
///
/// # Safety
///
/// 1. This will disable the LSE clock.
/// Ensure no peripherals are using the LSE clock before calling this function.
/// 2. This will reset the real-time clock.
/// Setup the RTC after calling this function.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, rcc::pulse_reset_backup_domain};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// unsafe { pulse_reset_backup_domain(&mut dp.RCC, &mut dp.PWR) };
/// ```
#[inline]
pub unsafe fn pulse_reset_backup_domain(rcc: &mut pac::RCC, pwr: &mut pac::PWR) {
pwr.cr1.modify(|_, w| w.dbp().enabled());
rcc.bdcr.modify(|_, w| w.bdrst().set_bit());
rcc.bdcr.modify(|_, w| w.bdrst().clear_bit());
}
/// Low-speed oscillator output pin.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Lsco {
pin: crate::gpio::pins::A2,
}
impl Lsco {
/// Enable the low-speed oscillator output.
///
/// # Safety
///
/// 1. Backup domain write protect must be disabled.
/// 2. The selected clock must be enabled for system use.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// gpio::PortA,
/// pac,
/// rcc::{Lsco, LscoSel},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // disable backup domain write protect
/// dp.PWR.cr1.modify(|_, w| w.dbp().enabled());
///
/// // enable the LSE clock
/// dp.RCC
/// .bdcr
/// .modify(|_, w| w.lseon().on().lsesysen().enabled());
/// while dp.RCC.bdcr.read().lserdy().is_not_ready() {}
/// while dp.RCC.bdcr.read().lsesysrdy().is_not_ready() {}
///
/// let gpioa: PortA = PortA::split(dp.GPIOA, &mut dp.RCC);
/// let a2: Lsco = cortex_m::interrupt::free(|cs| unsafe {
/// Lsco::enable(gpioa.a2, LscoSel::Lse, &mut dp.RCC, cs)
/// });
/// ```
#[inline]
pub unsafe fn enable(
mut a2: crate::gpio::pins::A2,
sel: LscoSel,
rcc: &mut pac::RCC,
cs: &CriticalSection,
) -> Self {
use crate::gpio::sealed::Lsco;
a2.set_lsco_af(cs);
rcc.bdcr
.modify(|_, w| w.lscoen().enabled().lscosel().variant(sel));
Self { pin: a2 }
}
/// Disable the low-speed oscillator output.
///
/// # Safety
///
/// 1. Backup domain write protect must be disabled.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{
/// gpio::{pins, PortA},
/// pac,
/// rcc::{Lsco, LscoSel},
/// };
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// // disable backup domain write protect
/// dp.PWR.cr1.modify(|_, w| w.dbp().enabled());
///
/// // enable the LSE clock
/// dp.RCC
/// .bdcr
/// .modify(|_, w| w.lseon().on().lsesysen().enabled());
/// while dp.RCC.bdcr.read().lserdy().is_not_ready() {}
/// while dp.RCC.bdcr.read().lsesysrdy().is_not_ready() {}
///
/// let gpioa: PortA = PortA::split(dp.GPIOA, &mut dp.RCC);
/// let lsco: Lsco = cortex_m::interrupt::free(|cs| unsafe {
/// Lsco::enable(gpioa.a2, LscoSel::Lse, &mut dp.RCC, cs)
/// });
///
/// // ... use LSCO
///
/// let a2: pins::A2 = unsafe { lsco.disable(&mut dp.RCC) };
/// ```
#[inline]
pub unsafe fn disable(self, rcc: &mut pac::RCC) -> crate::gpio::pins::A2 {
rcc.bdcr.modify(|_, w| w.lscoen().disabled());
self.pin
}
}