1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
//! True random number generator
//!
//! # Performance
//!
//! Comparison with the [chacha] algorithm seeded by hardware.
//!
//! | Source        | Cycles per `[u32; 4]` |
//! |---------------|-----------------------|
//! | `ChaCha20Rng` | 2,875                 |
//! | `ChaCha12Rng` | 1,764                 |
//! | `ChaCha8Rng`  | 1,216                 |
//! | HW            | 410                   |
//!
//! [chacha]: https://crates.io/crates/chacha20

use crate::pac;

use core::num::NonZeroU32;

/// RNG trait abstractions
pub use rand_core;

/// RNG error types
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// A seed error (noise error) occurred.
    ///
    /// **Note:** There is automatic correction for seed errors included.
    /// This error means that automatic correction was attempted, but failed.
    Seed,
    /// RNG frequency is too low.
    ///
    /// Check that the RNG is configured correctly.
    Clock,
}

impl From<Error> for rand_core::Error {
    fn from(e: Error) -> Self {
        match e {
            // safety: 1 is non-zero
            Error::Seed => unsafe { NonZeroU32::new_unchecked(1) }.into(),
            // safety: 2 is non-zero
            Error::Clock => unsafe { NonZeroU32::new_unchecked(2) }.into(),
        }
    }
}

pub use pac::rcc::ccipr::RNGSEL_A as Clk;

/// RNG driver.
#[derive(Debug)]
pub struct Rng {
    rng: pac::RNG,
    err_cnt: u32,
}

impl Rng {
    /// Create a new `Rng` driver from a RNG peripheral.
    ///
    /// This will select the clock source, enable clocks, and reset the RNG
    /// peripheral.
    ///
    /// This will **NOT** enable the selected clock source, when in doubt use
    /// MSI because it is enabled with power-on-reset.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    ///
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    /// ```
    pub fn new(rng: pac::RNG, clk: Clk, rcc: &mut pac::RCC) -> Rng {
        rcc.ccipr.modify(|_, w| w.rngsel().variant(clk));
        Self::enable_clock(rcc);
        rcc.ahb3rstr.modify(|_, w| w.rngrst().set_bit());
        rcc.ahb3rstr.modify(|_, w| w.rngrst().clear_bit());

        // RNG configuration A
        // see table 131 "RNG configurations" in the reference manual
        rng.cr.write(|w| {
            w.condrst().set_bit();
            w.nistc().set_bit();
            w.rng_config1().config_a();
            w.clkdiv().bits(0x0);
            w.rng_config2().config_a_b();
            w.rng_config3().config_a();
            w.ced().enabled();
            w.ie().disabled(); // interrupt enable
            w.rngen().set_bit()
        });

        rng.cr.write(|w| {
            w.condrst().clear_bit();
            w.nistc().set_bit();
            w.rng_config1().config_a();
            w.clkdiv().bits(0x0);
            w.rng_config2().config_a_b();
            w.rng_config3().config_a();
            w.ced().clear_bit();
            w.ie().disabled(); // interrupt enable
            w.rngen().set_bit()
        });

        // when CONDRST is set to 0 by software its value goes to 0 when the
        // reset process is done.
        // It takes about 2 AHB clock cycles + 2 RNG clock cycles
        while rng.cr.read().condrst().bit_is_set() {}

        Rng { rng, err_cnt: 0 }
    }

    /// Free the RNG peripheral from the driver.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rcc: pac::RCC = dp.RCC;
    /// let rng_dp: pac::RNG = dp.RNG;
    ///
    /// let mut rng = Rng::new(rng_dp, Clk::Msi, &mut rcc);
    /// // ... use rng
    /// let rng_dp: pac::RNG = rng.free();
    /// ```
    #[inline]
    pub fn free(self) -> pac::RNG {
        self.rng
    }

    /// Steal the RNG peripheral from whatever is currently using it.
    ///
    /// This will **not** initialize the RNG peripheral (unlike [`new`]).
    ///
    /// # Safety
    ///
    /// This will create a new RNG peripheral, bypassing the singleton checks
    /// that normally occur.
    /// You are responsible for ensuring that the driver has exclusive access to
    /// the RNG peripheral.
    /// You are also responsible for ensuring the RNG peripheral has been setup
    /// correctly.
    ///
    /// This will also reset the correctable noise error counter.
    ///
    /// # Example
    ///
    /// ```
    /// use stm32wlxx_hal::rng::Rng;
    ///
    /// // ... setup happens here
    ///
    /// let rng = unsafe { Rng::steal() };
    /// ```
    ///
    /// [`new`]: Rng::new
    #[inline]
    pub unsafe fn steal() -> Rng {
        let dp: pac::Peripherals = pac::Peripherals::steal();
        Rng {
            rng: dp.RNG,
            err_cnt: 0,
        }
    }

    /// Unmask the RNG IRQ in the NVIC.
    ///
    /// # Safety
    ///
    /// This can break mask-based critical sections.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # #[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
    /// unsafe { stm32wlxx_hal::rng::Rng::unmask_irq() };
    /// ```
    #[cfg(all(not(feature = "stm32wl5x_cm0p"), feature = "rt"))]
    #[inline]
    pub unsafe fn unmask_irq() {
        pac::NVIC::unmask(pac::Interrupt::TRUE_RNG)
    }

    /// Disable the RNG clock.
    ///
    /// # Safety
    ///
    /// 1. You are responsible for ensuring the RNG is in a state where the
    ///    clock can be disabled without entering an error state.
    /// 2. You cannot use the RNG bus while the clock is disabled.
    /// 3. You are responsible for re-enabling the clock before resuming use
    ///    of the RNG.
    /// 4. You are responsible for setting up anything that may have lost state
    ///    while the clock was disabled.
    #[inline]
    pub unsafe fn disable_clock(rcc: &mut pac::RCC) {
        rcc.ahb3enr.modify(|_, w| w.rngen().disabled());
    }

    /// Enable the RNG clock.
    #[inline]
    pub fn enable_clock(rcc: &mut pac::RCC) {
        rcc.ahb3enr.modify(|_, w| w.rngen().enabled());
        rcc.ahb3enr.read(); // delay after an RCC peripheral clock enabling
    }

    /// Returns the number of correctable seed errors that have occurred.
    ///
    /// This counter will saturate when it hits the maximum value.
    #[inline]
    pub fn seed_error_stat(&self) -> u32 {
        self.err_cnt
    }

    /// Reset the correctable seed error counter to zero.
    #[inline]
    pub fn reset_seed_error_stat(&mut self) {
        self.err_cnt = 0
    }

    fn poll_data_valid(&mut self) -> Result<(), Error> {
        loop {
            let sr = self.rng.sr.read();
            if sr.drdy().bit_is_set() {
                return Ok(());
            } else if sr.secs().bit_is_set() {
                self.recover_from_noise_error()?;
            } else if sr.cecs().bit_is_set() {
                return Err(Error::Clock);
            }
        }
    }

    /// Try to fill the destination buffer with random data.
    ///
    /// This is the native data size for the RNG.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let mut nonce: [u32; 4] = [0; 4];
    /// rng.try_fill_u32(&mut nonce)?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_fill_u32(&mut self, dest: &mut [u32]) -> Result<(), Error> {
        for dw in dest {
            *dw = self.try_u32()?;
        }
        Ok(())
    }

    /// Try to fill the destination buffer with random data.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let mut nonce: [u8; 16] = [0; 16];
    /// rng.try_fill_u8(&mut nonce)?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_fill_u8(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        for chunk in dest.chunks_mut(4) {
            let mut entropy: [u32; 1] = [0];
            self.try_fill_u32(&mut entropy)?;

            chunk
                .iter_mut()
                .enumerate()
                .for_each(|(idx, byte)| *byte = entropy[0].to_be_bytes()[idx])
        }

        Ok(())
    }

    /// Try to generate a random `u8`.
    ///
    /// This is not efficient if you need to generate a lot of entropy, this is
    /// provided as a convenience function that wraps
    /// [`try_fill_u8`](crate::rng::Rng::try_fill_u8)
    /// for testing and prototyping.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let rand_value: u8 = rng.try_u8()?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_u8(&mut self) -> Result<u8, Error> {
        Ok(self.try_u32()? as u8)
    }

    /// Try to generate a random `u16`.
    ///
    /// This is not efficient if you need to generate a lot of entropy, this is
    /// provided as a convenience function that wraps
    /// [`try_fill_u8`](crate::rng::Rng::try_fill_u8)
    /// for testing and prototyping.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let rand_value: u16 = rng.try_u16()?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_u16(&mut self) -> Result<u16, Error> {
        Ok(self.try_u32()? as u16)
    }

    /// Try to generate a random `u32`.
    ///
    /// This is not efficient if you need to generate a lot of entropy, this is
    /// provided as a convenience function that wraps
    /// [`try_fill_u32`](crate::rng::Rng::try_fill_u32)
    /// for testing and prototyping.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let rand_value: u32 = rng.try_u32()?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_u32(&mut self) -> Result<u32, Error> {
        // reference manual recommends verifying DR is non-zero for
        // **each** read to DR incase there is a seed error between
        // polling SR and reading DR
        self.poll_data_valid()?;
        Ok(self.rng.dr.read().bits())
    }

    /// Try to generate a random `u64`.
    ///
    /// This is not efficient if you need to generate a lot of entropy, this is
    /// provided as a convenience function that wraps
    /// [`try_fill_u8`](crate::rng::Rng::try_fill_u8)
    /// for testing and prototyping.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let rand_value: u64 = rng.try_u64()?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_u64(&mut self) -> Result<u64, Error> {
        let mut buf: [u8; 8] = [0; 8];
        self.try_fill_u8(&mut buf)?;
        Ok(u64::from_le_bytes(buf))
    }

    /// Try to generate a random `u128`.
    ///
    /// This is not efficient if you need to generate a lot of entropy, this is
    /// provided as a convenience function that wraps
    /// [`try_fill_u8`](crate::rng::Rng::try_fill_u8)
    /// for testing and prototyping.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use stm32wlxx_hal::{
    ///     pac,
    ///     rng::{Clk, Rng},
    /// };
    ///
    /// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
    /// let mut rng = Rng::new(dp.RNG, Clk::Msi, &mut dp.RCC);
    ///
    /// let rand_value: u128 = rng.try_u128()?;
    /// # Ok::<(), stm32wlxx_hal::rng::Error>(())
    /// ```
    pub fn try_u128(&mut self) -> Result<u128, Error> {
        let mut buf: [u8; 16] = [0; 16];
        self.try_fill_u8(&mut buf)?;
        Ok(u128::from_le_bytes(buf))
    }

    // Reference manual section 22.3.7 "Error management"
    fn recover_from_noise_error(&mut self) -> Result<(), Error> {
        // software reset by writing CONDRST
        // this automatically clears the seed error interrupt status
        self.rng.cr.modify(|_, w| w.condrst().set_bit());
        self.rng.cr.modify(|_, w| w.condrst().clear_bit());

        // when CONDRST is set to 0 by software its value goes to 0 when the
        // reset process is done.
        // It takes about 2 AHB clock cycles + 2 RNG clock cycles
        while self.rng.cr.read().condrst().bit_is_set() {}

        let sr = self.rng.sr.read();
        if sr.secs().bit_is_set() {
            Err(Error::Seed)
        } else {
            self.err_cnt = self.err_cnt.saturating_add(1);
            Ok(())
        }
    }
}

impl rand_core::RngCore for Rng {
    /// Not recommended for use, panics upon errors.
    fn next_u32(&mut self) -> u32 {
        let mut dws: [u32; 1] = [0; 1];
        unwrap!(self.try_fill_u32(&mut dws));
        dws[0]
    }

    /// Not recommended for use, panics upon errors.
    fn next_u64(&mut self) -> u64 {
        let mut dws: [u32; 2] = [0; 2];
        unwrap!(self.try_fill_u32(&mut dws));
        u64::from(dws[0]) << 32 | u64::from(dws[1])
    }

    /// Not recommended for use, panics upon errors.
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        unwrap!(self.try_fill_u8(dest))
    }

    /// Use this method if using the `RngCore` for `CryptoRng` traits.
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
        self.try_fill_u8(dest)?;
        Ok(())
    }
}

impl rand_core::CryptoRng for Rng {}