1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
//! Sub-GHz radio operating in the 150 - 960 MHz ISM band
//!
//! The main radio type is [`SubGhz`].
//!
//! ## LoRa user notice
//!
//! The Sub-GHz radio may have an undocumented erratum, see this ST community
//! post for more information: [link]
//!
//! [link]: https://community.st.com/s/question/0D53W00000hR8kpSAC/stm32wl55-erratum-clairification
mod bit_sync;
mod cad_params;
mod calibrate;
mod fallback_mode;
mod hse_trim;
mod irq;
mod lora_sync_word;
mod mod_params;
mod ocp;
mod op_error;
mod pa_config;
mod packet_params;
mod packet_status;
mod packet_type;
mod pkt_ctrl;
mod pmode;
mod pwr_ctrl;
mod reg_mode;
mod rf_frequency;
mod rx_timeout_stop;
mod sleep_cfg;
mod smps;
mod standby_clk;
mod stats;
mod status;
mod tcxo_mode;
mod timeout;
mod tx_params;
mod value_error;
use crate::{
dma::DmaCh,
pac,
spi::{BaudRate, SgMiso, SgMosi, Spi3},
};
pub use bit_sync::BitSync;
pub use cad_params::{CadParams, ExitMode, NbCadSymbol};
pub use calibrate::{Calibrate, CalibrateImage};
pub use fallback_mode::FallbackMode;
pub use hse_trim::HseTrim;
pub use irq::{CfgIrq, Irq, IrqLine};
pub use lora_sync_word::LoRaSyncWord;
pub use mod_params::BpskModParams;
pub use mod_params::{CodingRate, LoRaBandwidth, LoRaModParams, SpreadingFactor};
pub use mod_params::{FskBandwidth, FskBitrate, FskFdev, FskModParams, FskPulseShape};
pub use ocp::Ocp;
pub use op_error::OpError;
pub use pa_config::{PaConfig, PaSel};
pub use packet_params::{
AddrComp, BpskPacketParams, CrcType, GenericPacketParams, HeaderType, LoRaPacketParams,
PreambleDetection,
};
pub use packet_status::{FskPacketStatus, LoRaPacketStatus};
pub use packet_type::PacketType;
pub use pkt_ctrl::{InfSeqSel, PktCtrl};
pub use pmode::PMode;
pub use pwr_ctrl::{CurrentLim, PwrCtrl};
pub use reg_mode::RegMode;
pub use rf_frequency::RfFreq;
pub use rx_timeout_stop::RxTimeoutStop;
pub use sleep_cfg::{SleepCfg, Startup};
pub use smps::SmpsDrv;
pub use standby_clk::StandbyClk;
pub use stats::{FskStats, LoRaStats, Stats};
pub use status::{CmdStatus, Status, StatusMode};
pub use tcxo_mode::{TcxoMode, TcxoTrim};
pub use timeout::Timeout;
pub use tx_params::{RampTime, TxParams};
pub use value_error::ValueError;
use crate::Ratio;
use embedded_hal::blocking::spi::{Transfer, Write};
/// Passthrough for SPI errors (for now)
pub type Error = crate::spi::Error;
struct Nss {
_priv: (),
}
impl Nss {
#[inline(always)]
pub fn new() -> Nss {
Self::clear();
Nss { _priv: () }
}
/// Clear NSS, enabling SPI transactions
#[inline(always)]
fn clear() {
unsafe { (*pac::PWR::PTR).subghzspicr.write(|w| w.nss().clear_bit()) }
}
/// Set NSS, disabling SPI transactions
#[inline(always)]
fn set() {
unsafe { (*pac::PWR::PTR).subghzspicr.write(|w| w.nss().set_bit()) }
}
}
impl Drop for Nss {
fn drop(&mut self) {
Self::set()
}
}
fn baud_rate(rcc: &pac::RCC) -> BaudRate {
// see RM0453 rev 1 section 7.2.13 page 291
// The sub-GHz radio SPI clock is derived from the PCLK3 clock.
// The SUBGHZSPI_SCK frequency is obtained by PCLK3 divided by two.
// The SUBGHZSPI_SCK clock maximum speed must not exceed 16 MHz.
if crate::rcc::hclk3_hz(rcc) > 32_000_000 {
BaudRate::Div4
} else {
BaudRate::Div2
}
}
/// Wakeup the radio from sleep mode.
///
/// # Safety
///
/// 1. This must not be called when the SubGHz radio is in use.
/// 2. This must not be called when the SubGHz SPI bus is in use.
///
/// # Example
///
/// See [`SubGhz::set_sleep`]
#[inline]
pub unsafe fn wakeup() {
Nss::clear();
// RM0453 rev 2 page 171 section 5.7.2 "Sleep mode"
// on a firmware request via the sub-GHz radio SPI NSS signal
// (keeping sub-GHz radio SPI NSS low for at least 20 μs)
//
// I have found this to be a more reliable mechanism for ensuring NSS is
// pulled low for long enough to wake the radio.
while rfbusys() {}
Nss::set();
}
/// Unmask the SubGHz IRQ in the NVIC.
///
/// # Safety
///
/// This can break mask-based critical sections.
///
/// # Example
///
/// ```no_run
/// unsafe { stm32wlxx_hal::subghz::unmask_irq() };
/// ```
#[inline]
pub unsafe fn unmask_irq() {
pac::NVIC::unmask(pac::Interrupt::RADIO_IRQ_BUSY)
}
/// Mask the SubGHz IRQ in the NVIC.
///
/// # Example
///
/// ```no_run
/// stm32wlxx_hal::subghz::mask_irq();
/// ```
#[inline]
pub fn mask_irq() {
pac::NVIC::mask(pac::Interrupt::RADIO_IRQ_BUSY)
}
/// Returns `true` if the radio is busy.
///
/// This may not be set immediately after NSS going low.
///
/// See RM0461 Rev 4 section 5.3 page 181 "Radio busy management" for more
/// details.
#[inline]
pub fn rfbusys() -> bool {
// safety: atomic read with no side-effects
unsafe { (*pac::PWR::PTR).sr2.read().rfbusys().is_busy() }
}
/// Returns `true` if the radio is busy or NSS is low.
///
/// See RM0461 Rev 4 section 5.3 page 181 "Radio busy management" for more
/// details.
#[inline]
pub fn rfbusyms() -> bool {
// safety: atomic read with no side-effects
unsafe { (*pac::PWR::PTR).sr2.read().rfbusyms().is_busy() }
}
#[inline]
fn hold_reset(rcc: &mut pac::RCC) {
rcc.csr.modify(|_, w| w.rfrst().set_bit());
}
#[inline]
fn release_reset(rcc: &mut pac::RCC) {
rcc.csr.modify(|_, w| w.rfrst().clear_bit());
}
#[inline]
fn pulse_reset(rcc: &mut pac::RCC) {
hold_reset(rcc);
release_reset(rcc);
}
/// Sub-GHz radio peripheral.
///
/// # Example
///
/// GFSK setup
///
/// ```no_run
/// use static_assertions as sa;
/// use stm32wlxx_hal::{
/// dma::{AllDma, Dma1Ch1, Dma1Ch2},
/// pac,
/// subghz::{
/// AddrComp, CalibrateImage, CfgIrq, CrcType, FallbackMode, FskBandwidth, FskBitrate,
/// FskFdev, FskModParams, FskPulseShape, GenericPacketParams, HeaderType, Irq, Ocp,
/// PaConfig, PacketType, PreambleDetection, RampTime, RegMode, RfFreq, StandbyClk, SubGhz,
/// TcxoMode, TcxoTrim, Timeout, TxParams,
/// },
/// };
///
/// const IRQ_CFG: CfgIrq = CfgIrq::new()
/// .irq_enable_all(Irq::RxDone)
/// .irq_enable_all(Irq::Timeout)
/// .irq_enable_all(Irq::TxDone)
/// .irq_enable_all(Irq::Err);
///
/// const PREAMBLE_LEN: u16 = 5 * 8;
/// const RF_FREQ: RfFreq = RfFreq::from_frequency(434_000_000);
/// const SYNC_WORD: [u8; 8] = [0x79, 0x80, 0x0C, 0xC0, 0x29, 0x95, 0xF8, 0x4A];
/// const SYNC_WORD_LEN: u8 = SYNC_WORD.len() as u8;
/// const SYNC_WORD_LEN_BITS: u8 = SYNC_WORD_LEN * 8;
/// const TX_BUF_OFFSET: u8 = 0;
/// const RX_BUF_OFFSET: u8 = 128;
///
/// const FSK_PACKET_PARAMS: GenericPacketParams = GenericPacketParams::new()
/// .set_preamble_len(PREAMBLE_LEN)
/// .set_preamble_detection(PreambleDetection::Bit8)
/// .set_sync_word_len(SYNC_WORD_LEN_BITS)
/// .set_addr_comp(AddrComp::Disabled)
/// .set_header_type(HeaderType::Variable)
/// .set_payload_len(128)
/// .set_crc_type(CrcType::Byte2)
/// .set_whitening_enable(true);
///
/// const FSK_MOD_PARAMS: FskModParams = FskModParams::new()
/// .set_bitrate(FskBitrate::from_bps(20_000))
/// .set_pulse_shape(FskPulseShape::Bt03)
/// .set_bandwidth(FskBandwidth::Bw58)
/// .set_fdev(FskFdev::from_hertz(10_000));
///
/// sa::const_assert!(FSK_MOD_PARAMS.is_valid_worst_case());
///
/// const PA_CONFIG: PaConfig = PaConfig::LP_10;
/// const TX_PARAMS: TxParams = TxParams::LP_10.set_ramp_time(RampTime::Micros40);
///
/// const TCXO_MODE: TcxoMode = TcxoMode::new()
/// .set_tcxo_trim(TcxoTrim::Volts1pt7)
/// .set_timeout(Timeout::from_millis_sat(10));
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let dma: AllDma = AllDma::split(dp.DMAMUX, dp.DMA1, dp.DMA2, &mut dp.RCC);
/// let mut sg: SubGhz<Dma1Ch1, Dma1Ch2> =
/// SubGhz::new_with_dma(dp.SPI3, dma.d1.c1, dma.d1.c2, &mut dp.RCC);
///
/// sg.set_standby(StandbyClk::Rc)?;
/// sg.set_tcxo_mode(&TCXO_MODE)?;
/// sg.set_tx_rx_fallback_mode(FallbackMode::Standby)?;
/// sg.set_regulator_mode(RegMode::Ldo)?;
/// sg.set_buffer_base_address(TX_BUF_OFFSET, RX_BUF_OFFSET)?;
/// sg.set_pa_config(&PA_CONFIG)?;
/// sg.set_pa_ocp(Ocp::Max60m)?;
/// sg.set_tx_params(&TX_PARAMS)?;
/// sg.set_packet_type(PacketType::Fsk)?;
/// sg.set_sync_word(&SYNC_WORD)?;
/// sg.set_fsk_mod_params(&FSK_MOD_PARAMS)?;
/// sg.set_packet_params(&FSK_PACKET_PARAMS)?;
/// sg.calibrate_image(CalibrateImage::ISM_430_440)?;
/// sg.set_rf_frequency(&RF_FREQ)?;
/// sg.set_irq_cfg(&IRQ_CFG)?;
/// # Ok::<(), stm32wlxx_hal::subghz::Error>(())
/// ```
///
/// Basic RX, requires setup.
///
/// ```no_run
/// # let mut sg = unsafe { stm32wlxx_hal::subghz::SubGhz::steal() };
/// use stm32wlxx_hal::subghz::{Irq, Timeout};
///
/// // if you have an RF switch put it into RX mode on this line
/// sg.set_rx(Timeout::DISABLED)?;
///
/// loop {
/// let (status, irq_status) = sg.irq_status()?;
/// sg.clear_irq_status(irq_status)?;
///
/// if irq_status & Irq::RxDone.mask() != 0 {
/// let (status, len, ptr) = sg.rx_buffer_status()?;
/// // this is a little large for the stack
/// let mut buf: [u8; 128] = [0; 128];
/// let data: &mut [u8] = &mut buf[..usize::from(len)];
/// sg.read_buffer(ptr, data)?;
/// // ... do things with the data
/// break;
/// } else {
/// // ... handle other IRQs
/// }
/// }
/// # Ok::<(), stm32wlxx_hal::subghz::Error>(())
/// ```
///
/// Basic TX, requires setup.
///
/// ```no_run
/// # const TX_BUF_OFFSET: u8 = 0;
/// # let mut sg = unsafe { stm32wlxx_hal::subghz::SubGhz::steal() };
/// use stm32wlxx_hal::subghz::{Irq, Timeout};
///
/// sg.write_buffer(TX_BUF_OFFSET, b"Hello, World!")?;
/// // if you have an RF switch put it into TX mode on this line
/// sg.set_tx(Timeout::from_millis_sat(100))?;
///
/// loop {
/// let (status, irq_status) = sg.irq_status()?;
/// sg.clear_irq_status(irq_status)?;
///
/// if irq_status & Irq::TxDone.mask() != 0 {
/// // nothing is required upon TX done
/// // you may want to put the radio into RX mode after TX completion
/// break;
/// } else {
/// // ... handle other IRQs
/// }
/// }
/// # Ok::<(), stm32wlxx_hal::subghz::Error>(())
/// ```
#[derive(Debug)]
pub struct SubGhz<MISO, MOSI> {
spi: Spi3<MISO, MOSI>,
}
impl<MISO, MOSI> SubGhz<MISO, MOSI> {
/// Disable the SPI3 (SubGHz SPI) clock.
///
/// # Safety
///
/// 1. You are responsible for ensuring the SPI bus is in a state where the
/// clock can be disabled without entering an error state.
/// 2. You cannot use the SPI bus while the clock is disabled.
/// 3. You are responsible for re-enabling the clock before resuming use
/// of the SPI bus.
/// 4. You are responsible for setting up anything that may have lost state
/// while the clock was disabled.
pub unsafe fn disable_spi_clock(rcc: &mut pac::RCC) {
Spi3::<SgMiso, SgMosi>::disable_clock(rcc)
}
/// Enable the SPI3 (SubGHz SPI) clock.
pub fn enable_spi_clock(rcc: &mut pac::RCC) {
Spi3::<SgMiso, SgMosi>::enable_clock(rcc)
}
fn poll_not_busy(&self) {
// TODO: this is a terrible timeout
let mut count: u32 = 1_000_000;
while rfbusys() {
count -= 1;
if count == 0 {
let dp = unsafe { pac::Peripherals::steal() };
panic!(
"rfbusys timeout pwr.sr2=0x{:X} pwr.subghzspicr=0x{:X} pwr.cr1=0x{:X}",
dp.PWR.sr2.read().bits(),
dp.PWR.subghzspicr.read().bits(),
dp.PWR.cr1.read().bits(),
);
}
}
}
/// Free the SPI3 peripheral and DMA channels from the SubGhz driver.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, subghz::SubGhz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let sg = SubGhz::new(dp.SPI3, &mut dp.RCC);
/// let (spi, _, _) = sg.free();
/// ```
pub fn free(self) -> (pac::SPI3, MISO, MOSI) {
self.spi.free()
}
}
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
fn read(&mut self, opcode: OpCode, data: &mut [u8]) -> Result<(), Error> {
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi.write(&[opcode as u8])?;
self.spi.transfer(data)?;
}
self.poll_not_busy();
Ok(())
}
fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi.write(data)?;
}
self.poll_not_busy();
Ok(())
}
/// Read one byte from the sub-Ghz radio.
fn read_1(&mut self, opcode: OpCode) -> Result<u8, Error> {
let mut buf: [u8; 1] = [0; 1];
self.read(opcode, &mut buf)?;
Ok(buf[0])
}
/// Read a fixed number of bytes from the sub-Ghz radio.
fn read_n<const N: usize>(&mut self, opcode: OpCode) -> Result<[u8; N], Error> {
let mut buf: [u8; N] = [0; N];
self.read(opcode, &mut buf)?;
Ok(buf)
}
}
impl SubGhz<SgMiso, SgMosi> {
/// Create a new sub-GHz radio driver from a peripheral.
///
/// This will reset the radio and the SPI bus, and enable the peripheral
/// clock.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, subghz::SubGhz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
/// let sg = SubGhz::new(dp.SPI3, &mut dp.RCC);
/// ```
pub fn new(spi: pac::SPI3, rcc: &mut pac::RCC) -> SubGhz<SgMiso, SgMosi> {
pulse_reset(rcc);
// safety: radio has been reset
unsafe { Self::new_no_reset(spi, rcc) }
}
/// Create a new sub-GHz radio driver from a peripheral.
///
/// Same as `new`, but without a reset.
/// This is useful when waking up from standby to handle a radio interrupt.
///
/// # Safety
///
/// This will not reset the radio, the radio will be in an unknown state
/// when constructed with this method.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{pac, subghz::SubGhz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let sg = unsafe { SubGhz::new_no_reset(dp.SPI3, &mut dp.RCC) };
/// ```
#[allow(unused_unsafe)]
pub unsafe fn new_no_reset(spi: pac::SPI3, rcc: &mut pac::RCC) -> SubGhz<SgMiso, SgMosi> {
let spi: Spi3<SgMiso, SgMosi> = Spi3::new(spi, baud_rate(rcc), rcc);
unsafe { wakeup() };
Self { spi }
}
/// Steal the SubGHz peripheral from whatever is currently using it.
///
/// This will **not** initialize the SPI bus (unlike [`new`]).
///
/// # Safety
///
/// This will create a new `SPI3` peripheral, bypassing the singleton checks
/// that normally occur.
/// You are responsible for ensuring that the radio has exclusive access to
/// these peripherals.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::subghz::SubGhz;
///
/// // ... setup happens here
///
/// let sg = unsafe { SubGhz::steal() };
/// ```
///
/// [`new`]: SubGhz::new
pub unsafe fn steal() -> SubGhz<SgMiso, SgMosi> {
SubGhz { spi: Spi3::steal() }
}
}
impl<MISO: DmaCh, MOSI: DmaCh> SubGhz<MISO, MOSI> {
/// Create a new sub-GHz radio driver from a peripheral and two DMA
/// channels.
///
/// This will reset the radio and the SPI bus, and enable the peripheral
/// clock.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::AllDma, pac, subghz::SubGhz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let dma: AllDma = AllDma::split(dp.DMAMUX, dp.DMA1, dp.DMA2, &mut dp.RCC);
///
/// let sg = SubGhz::new_with_dma(dp.SPI3, dma.d1.c1, dma.d2.c1, &mut dp.RCC);
/// ```
pub fn new_with_dma(
spi: pac::SPI3,
miso_dma: MISO,
mosi_dma: MOSI,
rcc: &mut pac::RCC,
) -> Self {
pulse_reset(rcc);
// safety: radio has been reset
unsafe { Self::new_with_dma_no_reset(spi, miso_dma, mosi_dma, rcc) }
}
/// Create a new sub-GHz radio driver from a peripheral and two DMA
/// channels.
///
/// Same as `new_with_dma`, but without a reset.
/// This is useful when waking up from standby to handle a radio interrupt.
///
/// # Safety
///
/// This will not reset the radio, the radio will be in an unknown state
/// when constructed with this method.
///
/// # Example
///
/// ```no_run
/// use stm32wlxx_hal::{dma::AllDma, pac, subghz::SubGhz};
///
/// let mut dp: pac::Peripherals = pac::Peripherals::take().unwrap();
///
/// let dma: AllDma = AllDma::split(dp.DMAMUX, dp.DMA1, dp.DMA2, &mut dp.RCC);
///
/// let sg = unsafe { SubGhz::new_with_dma_no_reset(dp.SPI3, dma.d1.c1, dma.d2.c1, &mut dp.RCC) };
/// ```
#[allow(unused_unsafe)]
pub unsafe fn new_with_dma_no_reset(
spi: pac::SPI3,
miso_dma: MISO,
mosi_dma: MOSI,
rcc: &mut pac::RCC,
) -> Self {
release_reset(rcc);
let spi: Spi3<MISO, MOSI> =
Spi3::new_with_dma(spi, miso_dma, mosi_dma, baud_rate(rcc), rcc);
unsafe { wakeup() };
SubGhz { spi }
}
/// Steal the SubGHz peripheral from whatever is currently using it.
///
/// This will **not** initialize the SPI bus, or the DMA channels
/// (unlike [`new_with_dma`]).
///
/// # Safety
///
/// This will create a new `SPI3` peripheral, bypassing the singleton checks
/// that normally occur.
/// You are responsible for ensuring that the radio has exclusive access to
/// these peripherals.
///
/// # Example
///
/// ```
/// use stm32wlxx_hal::{
/// dma::{AllDma, Dma1Ch1, Dma2Ch1},
/// subghz::SubGhz,
/// };
///
/// // ... setup happens here
///
/// let sg: SubGhz<Dma1Ch1, Dma2Ch1> = unsafe {
/// let dma = AllDma::steal();
/// SubGhz::steal_with_dma(dma.d1.c1, dma.d2.c1)
/// };
/// ```
///
/// [`new_with_dma`]: SubGhz::new_with_dma
pub unsafe fn steal_with_dma(miso_dma: MISO, mosi_dma: MOSI) -> Self {
SubGhz {
spi: Spi3::steal_with_dma(miso_dma, mosi_dma),
}
}
}
// 5.8.2
/// Synchronous buffer access commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Write the radio buffer at the given offset.
pub fn write_buffer(&mut self, offset: u8, data: &[u8]) -> Result<(), Error> {
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi.write(&[OpCode::WriteBuffer as u8, offset])?;
self.spi.write(data)?;
}
self.poll_not_busy();
Ok(())
}
/// Read the radio buffer at the given offset.
///
/// The offset and length of a received packet is provided by
/// [`rx_buffer_status`](Self::rx_buffer_status).
pub fn read_buffer(&mut self, offset: u8, buf: &mut [u8]) -> Result<Status, Error> {
let mut status_buf: [u8; 1] = [0];
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi.write(&[OpCode::ReadBuffer as u8, offset])?;
self.spi.transfer(&mut status_buf)?;
self.spi.transfer(buf)?;
}
self.poll_not_busy();
Ok(status_buf[0].into())
}
}
// helper to pack register writes into a single buffer to avoid multiple DMA
// transfers
macro_rules! wr_reg {
[$reg:ident, $($data:expr),+] => {
&[
OpCode::WriteRegister as u8,
Register::$reg.address().to_be_bytes()[0],
Register::$reg.address().to_be_bytes()[1],
$($data),+
]
};
}
// 5.8.2
/// Register access
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
// register write with variable length data
fn write_register(&mut self, register: Register, data: &[u8]) -> Result<(), Error> {
let addr: [u8; 2] = register.address().to_be_bytes();
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi
.write(&[OpCode::WriteRegister as u8, addr[0], addr[1]])?;
self.spi.write(data)?;
}
self.poll_not_busy();
Ok(())
}
// register read with fixed (one) length data
fn read_register(&mut self, register: Register) -> Result<u8, Error> {
let addr: [u8; 2] = register.address().to_be_bytes();
let mut result = [0_u8];
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi
.write(&[OpCode::ReadRegister as u8, addr[0], addr[1], 0x00])?;
self.spi.transfer(&mut result)?;
}
self.poll_not_busy();
Ok(result[0])
}
/// Reads the PktCtrl register (GPKTCTL1A)
pub fn pkt_ctrl(&mut self) -> Result<PktCtrl, Error> {
let raw_pkt_ctrl = self.read_register(Register::GPKTCTL1A)?;
Ok(PktCtrl::from_raw(raw_pkt_ctrl))
}
/// Reads the Init Whitening register (GWHITEINIRL)
pub fn init_whitening(&mut self) -> Result<u8, Error> {
self.read_register(Register::GWHITEINIRL)
}
/// Set the LoRa bit synchronization.
pub fn set_bit_sync(&mut self, bs: BitSync) -> Result<(), Error> {
self.write(wr_reg![GBSYNC, bs.as_bits()])
}
/// Set the generic packet control register.
pub fn set_pkt_ctrl(&mut self, pkt_ctrl: PktCtrl) -> Result<(), Error> {
self.write(wr_reg![GPKTCTL1A, pkt_ctrl.as_bits()])
}
/// Set the initial value for generic packet whitening.
///
/// This sets the first 8 bits, the 9th bit is set with
/// [`set_pkt_ctrl`](Self::set_pkt_ctrl).
pub fn set_init_whitening(&mut self, init: u8) -> Result<(), Error> {
self.write(wr_reg![GWHITEINIRL, init])
}
/// Set the seed value for generic packet whitening.
pub fn set_whitening_seed(&mut self, seed: u16) -> Result<(), Error> {
let seed_as_array = u16::to_be_bytes(seed);
let pkt_ctrl_value = self.read_register(Register::GPKTCTL1A)?;
let new_pkt_ctrl = (pkt_ctrl_value & 0xFE) | (seed_as_array[0] & 0x01);
self.set_pkt_ctrl(PktCtrl::from_raw(new_pkt_ctrl))?;
self.set_init_whitening(seed_as_array[1])
}
/// Set the initial value for generic packet CRC polynomial.
pub fn set_crc_polynomial(&mut self, polynomial: u16) -> Result<(), Error> {
let bytes: [u8; 2] = polynomial.to_be_bytes();
self.write(wr_reg![GCRCINIRH, bytes[0], bytes[1]])
}
/// Set the generic packet CRC polynomial.
pub fn set_initial_crc_polynomial(&mut self, polynomial: u16) -> Result<(), Error> {
let bytes: [u8; 2] = polynomial.to_be_bytes();
self.write(wr_reg![GCRCPOLRH, bytes[0], bytes[1]])
}
/// Set the synchronization word registers.
pub fn set_sync_word(&mut self, sync_word: &[u8; 8]) -> Result<(), Error> {
self.write_register(Register::GSYNC7, sync_word)
}
/// Set the LoRa synchronization word registers.
pub fn set_lora_sync_word(&mut self, sync_word: LoRaSyncWord) -> Result<(), Error> {
let bytes: [u8; 2] = sync_word.bytes();
self.write(wr_reg![LSYNCH, bytes[0], bytes[1]])
}
/// Set the RX gain control.
pub fn set_rx_gain(&mut self, pmode: PMode) -> Result<(), Error> {
self.write(wr_reg![RXGAINC, pmode as u8])
}
/// Set the power amplifier over current protection.
pub fn set_pa_ocp(&mut self, ocp: Ocp) -> Result<(), Error> {
self.write(wr_reg![PAOCP, ocp as u8])
}
/// Restart the radio RTC.
///
/// This is used to workaround an erratum for [`set_rx_duty_cycle`].
///
/// [`set_rx_duty_cycle`]: crate::subghz::SubGhz::set_rx_duty_cycle
pub fn restart_rtc(&mut self) -> Result<(), Error> {
self.write(wr_reg![RTCCTLR, 0b1])
}
/// Set the radio real-time-clock period.
///
/// This is used to workaround an erratum for [`set_rx_duty_cycle`].
///
/// [`set_rx_duty_cycle`]: crate::subghz::SubGhz::set_rx_duty_cycle
pub fn set_rtc_period(&mut self, period: Timeout) -> Result<(), Error> {
let to_bits: u32 = period.into_bits();
self.write(wr_reg![
RTCPRDR2,
(to_bits >> 16) as u8,
(to_bits >> 8) as u8,
to_bits as u8
])
}
/// Set the HSE32 crystal OSC_IN load capacitor trimming.
pub fn set_hse_in_trim(&mut self, trim: HseTrim) -> Result<(), Error> {
self.write(wr_reg![HSEINTRIM, trim.into()])
}
/// Set the HSE32 crystal OSC_OUT load capacitor trimming.
pub fn set_hse_out_trim(&mut self, trim: HseTrim) -> Result<(), Error> {
self.write(wr_reg![HSEOUTTRIM, trim.into()])
}
/// Set the SMPS clock detection enabled.
///
/// SMPS clock detection must be enabled fore enabling the SMPS.
pub fn set_smps_clock_det_en(&mut self, en: bool) -> Result<(), Error> {
self.write(wr_reg![SMPSC0, (en as u8) << 6])
}
/// Set the power current limiting.
pub fn set_pwr_ctrl(&mut self, pwr_ctrl: PwrCtrl) -> Result<(), Error> {
self.write(wr_reg![PC, pwr_ctrl.as_bits()])
}
/// Set the maximum SMPS drive capability.
pub fn set_smps_drv(&mut self, drv: SmpsDrv) -> Result<(), Error> {
self.write(wr_reg![SMPSC2, (drv as u8) << 1])
}
/// Set the node address.
///
/// Used with [`GenericPacketParams::set_addr_comp`] to filter packets based
/// on node address.
pub fn set_node_addr(&mut self, addr: u8) -> Result<(), Error> {
self.write(wr_reg![NODE, addr])
}
/// Set the broadcast address.
///
/// Used with [`GenericPacketParams::set_addr_comp`] to filter packets based
/// on broadcast address.
pub fn set_broadcast_addr(&mut self, addr: u8) -> Result<(), Error> {
self.write(wr_reg![BROADCAST, addr])
}
/// Set both the broadcast address and node address.
///
/// This is a combination of [`set_node_addr`] and [`set_broadcast_addr`]
/// in a single SPI transfer.
///
/// [`set_node_addr`]: Self::set_node_addr
/// [`set_broadcast_addr`]: Self::set_broadcast_addr
pub fn set_addrs(&mut self, node: u8, broadcast: u8) -> Result<(), Error> {
self.write(wr_reg![NODE, node, broadcast])
}
}
// 5.8.3
/// Operating mode commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Put the radio into sleep mode.
///
/// This command is only accepted in standby mode.
/// The cfg argument allows some optional functions to be maintained
/// in sleep mode.
///
/// # Safety
///
/// 1. After the `set_sleep` command, the sub-GHz radio NSS must not go low
/// for 500 μs.
/// No reason is provided, the reference manual (RM0453 rev 2) simply
/// says "you must".
/// 2. The radio cannot be used while in sleep mode.
/// 3. The radio must be woken up with [`wakeup`] before resuming use.
///
/// # Example
///
/// Put the radio into sleep mode.
///
/// ```no_run
/// # let cp = unsafe { stm32wlxx_hal::pac::CorePeripherals::steal() };
/// # let dp = unsafe { stm32wlxx_hal::pac::Peripherals::steal() };
/// # let mut sg = unsafe { stm32wlxx_hal::subghz::SubGhz::steal() };
/// # let mut delay = new_delay(cp.SYST, &dp.RCC);
/// use stm32wlxx_hal::{
/// subghz::{wakeup, SleepCfg, StandbyClk},
/// util::new_delay,
/// };
///
/// sg.set_standby(StandbyClk::Rc)?;
/// unsafe { sg.set_sleep(SleepCfg::default())? };
/// delay.delay_us(500);
/// unsafe { wakeup() };
/// # Ok::<(), stm32wlxx_hal::subghz::Error>(())
/// ```
pub unsafe fn set_sleep(&mut self, cfg: SleepCfg) -> Result<(), Error> {
// poll for busy before, but not after
// radio idles with busy high while in sleep mode
self.poll_not_busy();
{
let _nss: Nss = Nss::new();
self.spi.write(&[OpCode::SetSleep as u8, u8::from(cfg)])?;
}
Ok(())
}
/// Put the radio into standby mode.
pub fn set_standby(&mut self, standby_clk: StandbyClk) -> Result<(), Error> {
self.write(&[OpCode::SetStandby as u8, u8::from(standby_clk)])
}
/// Put the subghz radio into frequency synthesis mode.
///
/// The RF-PLL frequency must be set with [`set_rf_frequency`] before using
/// this command.
///
/// Check the datasheet for more information, this is a test command but
/// I honestly do not see any use for it. Please update this description
/// if you know more than I do.
///
/// [`set_rf_frequency`]: crate::subghz::SubGhz::set_rf_frequency
pub fn set_fs(&mut self) -> Result<(), Error> {
self.write(&[OpCode::SetFs.into()])
}
/// Setup the sub-GHz radio for TX.
pub fn set_tx(&mut self, timeout: Timeout) -> Result<(), Error> {
let to_bits: u32 = timeout.into_bits();
self.write(&[
OpCode::SetTx.into(),
(to_bits >> 16) as u8,
(to_bits >> 8) as u8,
to_bits as u8,
])
}
/// Setup the sub-GHz radio for RX.
pub fn set_rx(&mut self, timeout: Timeout) -> Result<(), Error> {
let to_bits: u32 = timeout.into_bits();
self.write(&[
OpCode::SetRx.into(),
(to_bits >> 16) as u8,
(to_bits >> 8) as u8,
to_bits as u8,
])
}
/// Allows selection of the receiver event which stops the RX timeout timer.
pub fn set_rx_timeout_stop(&mut self, rx_timeout_stop: RxTimeoutStop) -> Result<(), Error> {
self.write(&[
OpCode::SetStopRxTimerOnPreamble.into(),
rx_timeout_stop.into(),
])
}
/// Put the radio in non-continuous RX mode.
///
/// This command must be sent in Standby mode.
/// This command is only functional with FSK and LoRa packet type.
///
/// The following steps are performed:
/// 1. Save sub-GHz radio configuration.
/// 2. Enter Receive mode and listen for a preamble for the specified `rx_period`.
/// 3. Upon the detection of a preamble, the `rx_period` timeout is stopped
/// and restarted with the value 2 × `rx_period` + `sleep_period`.
/// During this new period, the sub-GHz radio looks for the detection of
/// a synchronization word when in (G)FSK modulation mode,
/// or a header when in LoRa modulation mode.
/// 4. If no packet is received during the listen period defined by
/// 2 × `rx_period` + `sleep_period`, the sleep mode is entered for a
/// duration of `sleep_period`. At the end of the receive period,
/// the sub-GHz radio takes some time to save the context before starting
/// the sleep period.
/// 5. After the sleep period, a new listening period is automatically
/// started. The sub-GHz radio restores the sub-GHz radio configuration
/// and continuous with step 2.
///
/// The listening mode is terminated in one of the following cases:
/// * if a packet is received during the listening period: the sub-GHz radio
/// issues a [`RxDone`] interrupt and enters standby mode.
/// * if [`set_standby`] is sent during the listening period or after the
/// sub-GHz has been requested to exit sleep mode by sub-GHz radio SPI NSS
///
/// # Erratum
///
/// When a preamble is detected the radio should restart the RX timeout
/// with a value of 2 × `rx_period` + `sleep_period`.
/// Instead the radio erroneously uses `sleep_period`.
///
/// To workaround this use [`restart_rtc`] and [`set_rtc_period`] to
/// reprogram the radio timeout to 2 × `rx_period` + `sleep_period`.
///
/// Use code similar to this in the [`PreambleDetected`] interrupt handler.
///
/// ```no_run
/// # let rx_period: Timeout = Timeout::from_millis_sat(100);
/// # let sleep_period: Timeout = Timeout::from_millis_sat(100);
/// # let mut sg = unsafe { stm32wlxx_hal::subghz::SubGhz::steal() };
/// use stm32wlxx_hal::subghz::Timeout;
///
/// let period: Timeout = rx_period
/// .saturating_add(rx_period)
/// .saturating_add(sleep_period);
///
/// sg.set_rtc_period(period)?;
/// sg.restart_rtc()?;
/// # Ok::<(), stm32wlxx_hal::subghz::Error>(())
/// ```
///
/// Please read the erratum for more details.
///
/// [`PreambleDetected`]: crate::subghz::Irq::PreambleDetected
/// [`restart_rtc`]: crate::subghz::SubGhz::restart_rtc
/// [`RxDone`]: crate::subghz::Irq::RxDone
/// [`set_rf_frequency`]: crate::subghz::SubGhz::set_rf_frequency
/// [`set_rtc_period`]: crate::subghz::SubGhz::set_rtc_period
/// [`set_standby`]: crate::subghz::SubGhz::set_standby
pub fn set_rx_duty_cycle(
&mut self,
rx_period: Timeout,
sleep_period: Timeout,
) -> Result<(), Error> {
let rx_period_bits: u32 = rx_period.into_bits();
let sleep_period_bits: u32 = sleep_period.into_bits();
self.write(&[
OpCode::SetRxDutyCycle.into(),
(rx_period_bits >> 16) as u8,
(rx_period_bits >> 8) as u8,
rx_period_bits as u8,
(sleep_period_bits >> 16) as u8,
(sleep_period_bits >> 8) as u8,
sleep_period_bits as u8,
])
}
/// Channel Activity Detection (CAD) with LoRa packets.
///
/// The channel activity detection (CAD) is a specific LoRa operation mode,
/// where the sub-GHz radio searches for a LoRa radio signal.
/// After the search is completed, the Standby mode is automatically
/// entered, CAD is done and IRQ is generated.
/// When a LoRa radio signal is detected, the CAD detected IRQ is also
/// generated.
///
/// The length of the search must be configured with [`set_cad_params`]
/// prior to calling `set_cad`.
///
/// [`set_cad_params`]: crate::subghz::SubGhz::set_cad_params
pub fn set_cad(&mut self) -> Result<(), Error> {
self.write(&[OpCode::SetCad.into()])
}
/// Generate a continuous transmit tone at the RF-PLL frequency.
///
/// The sub-GHz radio remains in continuous transmit tone mode until a mode
/// configuration command is received.
pub fn set_tx_continuous_wave(&mut self) -> Result<(), Error> {
self.write(&[OpCode::SetTxContinuousWave as u8])
}
/// Generate an infinite preamble at the RF-PLL frequency.
///
/// The preamble is an alternating 0s and 1s sequence in generic (G)FSK and
/// (G)MSK modulations.
/// The preamble is symbol 0 in LoRa modulation.
/// The sub-GHz radio remains in infinite preamble mode until a mode
/// configuration command is received.
pub fn set_tx_continuous_preamble(&mut self) -> Result<(), Error> {
self.write(&[OpCode::SetTxContinuousPreamble as u8])
}
}
// 5.8.4
/// Radio configuration commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Set the packet type (modulation scheme).
pub fn set_packet_type(&mut self, packet_type: PacketType) -> Result<(), Error> {
self.write(&[OpCode::SetPacketType as u8, packet_type as u8])
}
/// Get the packet type.
pub fn packet_type(&mut self) -> Result<Result<PacketType, u8>, Error> {
let pkt_type: [u8; 2] = self.read_n(OpCode::GetPacketType)?;
Ok(PacketType::from_raw(pkt_type[1]))
}
/// Set the radio carrier frequency.
pub fn set_rf_frequency(&mut self, freq: &RfFreq) -> Result<(), Error> {
self.write(freq.as_slice())
}
/// Set the transmit output power and the PA ramp-up time.
pub fn set_tx_params(&mut self, params: &TxParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Power amplifier configuration.
///
/// Used to customize the maximum output power and efficiency.
pub fn set_pa_config(&mut self, pa_config: &PaConfig) -> Result<(), Error> {
self.write(pa_config.as_slice())
}
/// Operating mode to enter after a successful packet transmission or
/// packet reception.
pub fn set_tx_rx_fallback_mode(&mut self, fm: FallbackMode) -> Result<(), Error> {
self.write(&[OpCode::SetTxRxFallbackMode as u8, fm as u8])
}
/// Set channel activity detection (CAD) parameters.
pub fn set_cad_params(&mut self, params: &CadParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the data buffer base address for the packet handling in TX and RX.
///
/// There is a single buffer for both TX and RX.
/// The buffer is not memory mapped, it is accessed via the
/// [`read_buffer`](SubGhz::read_buffer) and
/// [`write_buffer`](SubGhz::write_buffer) methods.
pub fn set_buffer_base_address(&mut self, tx: u8, rx: u8) -> Result<(), Error> {
self.write(&[OpCode::SetBufferBaseAddress as u8, tx, rx])
}
/// Set the (G)FSK modulation parameters.
pub fn set_fsk_mod_params(&mut self, params: &FskModParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the LoRa modulation parameters.
pub fn set_lora_mod_params(&mut self, params: &LoRaModParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the BPSK modulation parameters.
pub fn set_bpsk_mod_params(&mut self, params: &BpskModParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the generic (FSK) packet parameters.
pub fn set_packet_params(&mut self, params: &GenericPacketParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the BPSK packet parameters.
pub fn set_bpsk_packet_params(&mut self, params: &BpskPacketParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the LoRa packet parameters.
pub fn set_lora_packet_params(&mut self, params: &LoRaPacketParams) -> Result<(), Error> {
self.write(params.as_slice())
}
/// Set the number of LoRa symbols to be received before starting the
/// reception of a LoRa packet.
///
/// Packet reception is started after `n` + 1 symbols are detected.
pub fn set_lora_symb_timeout(&mut self, n: u8) -> Result<(), Error> {
self.write(&[OpCode::SetLoRaSymbTimeout.into(), n])
}
}
// 5.8.5
/// Communication status and information commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Get the radio status.
///
/// The hardware (or documentation) appears to have many bugs where this
/// will return reserved values.
/// See this thread in the ST community for details: [link]
///
/// [link]: https://community.st.com/s/question/0D53W00000hR9GQSA0/stm32wl55-getstatus-command-returns-reserved-cmdstatus
pub fn status(&mut self) -> Result<Status, Error> {
Ok(self.read_1(OpCode::GetStatus)?.into())
}
/// Get the RX buffer status.
///
/// The return tuple is (status, payload_length, buffer_pointer).
pub fn rx_buffer_status(&mut self) -> Result<(Status, u8, u8), Error> {
let data: [u8; 3] = self.read_n(OpCode::GetRxBufferStatus)?;
Ok((data[0].into(), data[1], data[2]))
}
/// Returns information on the last received (G)FSK packet.
pub fn fsk_packet_status(&mut self) -> Result<FskPacketStatus, Error> {
Ok(FskPacketStatus::from(self.read_n(OpCode::GetPacketStatus)?))
}
/// Returns information on the last received LoRa packet.
pub fn lora_packet_status(&mut self) -> Result<LoRaPacketStatus, Error> {
Ok(LoRaPacketStatus::from(
self.read_n(OpCode::GetPacketStatus)?,
))
}
/// Get the instantaneous signal strength during packet reception.
///
/// The units are in dbm.
pub fn rssi_inst(&mut self) -> Result<(Status, Ratio<i16>), Error> {
let data: [u8; 2] = self.read_n(OpCode::GetRssiInst)?;
let status: Status = data[0].into();
let rssi: Ratio<i16> = Ratio::new_raw(i16::from(data[1]), -2);
Ok((status, rssi))
}
/// (G)FSK packet stats.
pub fn fsk_stats(&mut self) -> Result<Stats<FskStats>, Error> {
let data: [u8; 7] = self.read_n(OpCode::GetStats)?;
Ok(Stats::from_raw_fsk(data))
}
/// LoRa packet stats.
pub fn lora_stats(&mut self) -> Result<Stats<LoRaStats>, Error> {
let data: [u8; 7] = self.read_n(OpCode::GetStats)?;
Ok(Stats::from_raw_lora(data))
}
/// Reset the stats as reported in [`lora_stats`](SubGhz::lora_stats) and
/// [`fsk_stats`](SubGhz::fsk_stats).
pub fn reset_stats(&mut self) -> Result<(), Error> {
const RESET_STATS: [u8; 7] = [0x00; 7];
self.write(&RESET_STATS)
}
}
// 5.8.6
/// IRQ commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Set the interrupt configuration.
pub fn set_irq_cfg(&mut self, cfg: &CfgIrq) -> Result<(), Error> {
self.write(cfg.as_slice())
}
/// Get the IRQ status.
pub fn irq_status(&mut self) -> Result<(Status, u16), Error> {
let data: [u8; 3] = self.read_n(OpCode::GetIrqStatus)?;
let irq_status: u16 = u16::from_be_bytes([data[1], data[2]]);
Ok((data[0].into(), irq_status))
}
/// Clear the IRQ status.
pub fn clear_irq_status(&mut self, mask: u16) -> Result<(), Error> {
self.write(&[OpCode::ClrIrqStatus as u8, (mask >> 8) as u8, mask as u8])
}
}
// 5.8.7
/// Miscellaneous commands
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Calibrate one or several blocks at any time when in standby mode.
pub fn calibrate(&mut self, cal: u8) -> Result<(), Error> {
// bit 7 is reserved and must be kept at reset value.
self.write(&[OpCode::Calibrate as u8, cal & 0x7F])
}
/// Calibrate the image at the given frequencies.
///
/// Requires the radio to be in standby mode.
pub fn calibrate_image(&mut self, cal: CalibrateImage) -> Result<(), Error> {
self.write(&[OpCode::CalibrateImage as u8, cal.0, cal.1])
}
/// Set the radio power supply.
pub fn set_regulator_mode(&mut self, reg_mode: RegMode) -> Result<(), Error> {
self.write(&[OpCode::SetRegulatorMode as u8, reg_mode as u8])
}
/// Get the radio operational errors.
pub fn op_error(&mut self) -> Result<(Status, u16), Error> {
let data: [u8; 3] = self.read_n(OpCode::GetError)?;
Ok((data[0].into(), u16::from_be_bytes([data[1], data[2]])))
}
/// Clear all errors as reported by [`op_error`](SubGhz::op_error).
pub fn clear_error(&mut self) -> Result<(), Error> {
self.write(&[OpCode::ClrError as u8, 0x00])
}
}
// 5.8.8
/// Set TCXO mode command
impl<MISO, MOSI> SubGhz<MISO, MOSI>
where
Spi3<MISO, MOSI>: embedded_hal::blocking::spi::Transfer<u8, Error = Error>
+ embedded_hal::blocking::spi::Write<u8, Error = Error>,
{
/// Set the TCXO trim and HSE32 ready timeout.
pub fn set_tcxo_mode(&mut self, tcxo_mode: &TcxoMode) -> Result<(), Error> {
self.write(tcxo_mode.as_slice())
}
}
/// sub-GHz radio opcodes.
///
/// See Table 41 "Sub-GHz radio SPI commands overview"
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
#[allow(dead_code)]
pub(crate) enum OpCode {
Calibrate = 0x89,
CalibrateImage = 0x98,
CfgDioIrq = 0x08,
ClrError = 0x07,
ClrIrqStatus = 0x02,
GetError = 0x17,
GetIrqStatus = 0x12,
GetPacketStatus = 0x14,
GetPacketType = 0x11,
GetRssiInst = 0x15,
GetRxBufferStatus = 0x13,
GetStats = 0x10,
GetStatus = 0xC0,
ReadBuffer = 0x1E,
ReadRegister = 0x1D,
ResetStats = 0x00,
SetBufferBaseAddress = 0x8F,
SetCad = 0xC5,
SetCadParams = 0x88,
SetFs = 0xC1,
SetLoRaSymbTimeout = 0xA0,
SetModulationParams = 0x8B,
SetPacketParams = 0x8C,
SetPacketType = 0x8A,
SetPaConfig = 0x95,
SetRegulatorMode = 0x96,
SetRfFrequency = 0x86,
SetRx = 0x82,
SetRxDutyCycle = 0x94,
SetSleep = 0x84,
SetStandby = 0x80,
SetStopRxTimerOnPreamble = 0x9F,
SetTcxoMode = 0x97,
SetTx = 0x83,
SetTxContinuousPreamble = 0xD2,
SetTxContinuousWave = 0xD1,
SetTxParams = 0x8E,
SetTxRxFallbackMode = 0x93,
WriteBuffer = 0x0E,
WriteRegister = 0x0D,
}
impl From<OpCode> for u8 {
fn from(opcode: OpCode) -> Self {
opcode as u8
}
}
#[repr(u16)]
#[allow(clippy::upper_case_acronyms)]
pub(crate) enum Register {
/// Generic bit synchronization.
GBSYNC = 0x06AC,
/// Generic packet control.
GPKTCTL1A = 0x06B8,
/// Generic whitening.
GWHITEINIRL = 0x06B9,
/// Generic CRC initial.
GCRCINIRH = 0x06BC,
/// Generic CRC polynomial.
GCRCPOLRH = 0x06BE,
/// Generic synchronization word 7.
GSYNC7 = 0x06C0,
/// Node address.
NODE = 0x06CD,
/// Broadcast address.
BROADCAST = 0x06CE,
/// LoRa synchronization word MSB.
LSYNCH = 0x0740,
/// LoRa synchronization word LSB.
#[allow(dead_code)]
LSYNCL = 0x0741,
/// Receiver gain control.
RXGAINC = 0x08AC,
/// PA over current protection.
PAOCP = 0x08E7,
/// RTC control.
RTCCTLR = 0x0902,
/// RTC period MSB.
RTCPRDR2 = 0x0906,
/// RTC period mid-byte.
#[allow(dead_code)]
RTCPRDR1 = 0x0907,
/// RTC period LSB.
#[allow(dead_code)]
RTCPRDR0 = 0x0908,
/// HSE32 OSC_IN capacitor trim.
HSEINTRIM = 0x0911,
/// HSE32 OSC_OUT capacitor trim.
HSEOUTTRIM = 0x0912,
/// SMPS control 0.
SMPSC0 = 0x0916,
/// Power control.
PC = 0x091A,
/// SMPS control 2.
SMPSC2 = 0x0923,
}
impl Register {
pub const fn address(self) -> u16 {
self as u16
}
}